Page 1of 3

Reg No.:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Name:

Course Code: CS405

Course Name: COMPUTER SYSTEM ARCHITECTURE

Max. Marks: 100

Duration: 3 Hours

PART A Answer all auestions each carries 4 marks

		Answer all questions, each carries 4 marks.	Marks	
1		With a neat sketch, explain the architecture of a vector supercomputer.	(4)	
2		Explain implicit and explicit parallelism in parallel programming	(4)	
3		Compare the characteristics of CISC and RISC Architectures	(4)	
4		Differentiate between crossbar network and multiport memory.	(4)	
5		How does cache inconsistency occur in caches due to process migration and	(4)	
		I/O?		
6		Differentiate between store and forward and wormhole routing	(4)	
7		What are the possible hazards that can occur between read and write operations in an instruction pipeline?	(4)	
8		Determine the frequency of the pipeline if the stage delays are $\tau_1 = 3ns$, $\tau_2 = \tau_3$	(4)	
		=5ns and τ_4 =8 ns and the latch delay is 1 ns.		
9		Distinguish between static dataflow computers and dynamic dataflow	(4)	
		computers.		
10		What are the four context switching polices for multithreaded architecture?	(4)	
PART B				
Answer any two full questions, each carries 9 marks.				
11	a)	Explain Flynn's classification of computer architecture	(4)	

- 11 a) Explain Flynn's classification of computer architecture
 - b) A 40 MHz processor was used to execute a benchmark program with the following instruction mix and clock cycle counts:

Instruction Type	Instruction count	Clock cycle count	
Integer Arithmetic	35000	1	
Data Transfer	20000	2	
Floating point	15000	2	
Control Transfer	6000	2	
Determine the effective CPI, MIPS rate and execution time for this program.			

(5)

Explain the terms (i) Hit Ratio (ii) Effective Access Time with proper 12 a) (3) С

equations

b) Consider the design of a three level memory hierarchy with the following specifications for memory characteristics:

Memory level	Access time	Capacity	Cost/Kbyte
Cache	t1=25 ns	s1=512 Kbytes	c1=\$1.25
Main Memory	t2=903 ns	s2=32 Mbytes	c2=\$0.2
Disk array	t3=4 ms	s3 =39.8 Gbytes	c3=\$0.0002

Hit ratio of cache memory is h1=0.98 and a hit ratio of main memory is h2=0.9.

- (i) Calculate the effective access time.
- (ii) Calculate the total memory cost. (6)
- 13 a) Explain the role of compilers in exploiting parallelism (3)
 - b) Explain VLIW architecture. Also explain pipelining in VLIW processors. (6)

PART C Answer any two full questions, each carries 9 marks.

- 14 a) Draw the state transition graph for a cache block using Goodman's write-once (3) protocol for cache coherence.
 - b) Design an 8 input omega network using 2X2 switches as building blocks. (6) Show the switch settings for the permutation π₁=(0,6,4,7,3)(1,5)(2). Show the conflicts in switch settings, if any. Explain blocking and non-blocking networks in this context.
- 15 a) Differentiate between synchronous and asynchronous model of linear pipeline (3) processors.
 - b) Consider the following pipeline reservation table:

	1	2	3	4
S 1	Х			Х
S2		Х		
S 3			Х	

i) What are the forbidden latencies?

ii) Draw the transition diagram.

- iii) List all the simple cycles and greedy cycles.
- iv) Determine the optimal constant latency cycle and minimal average latency (MAL)

R7954

		v) Let the pipeline clock period be τ =20ns. Determine the throughput of	
		the pipeline.	(6)
16	a)	Explain full-map directory based protocol.	(4)
	b)	What do you mean by dimension order routing? Consider a 16 node hypercube	(5)
		network. Based on E-cube routing algorithm, show how to route a message	
		from 0010 to 1001. Find all intermediate nodes on routing path.	
		PART D Answer any two full questions, each carries 12 marks.	
17	(a)	Explain the Tomasulo's algorithm for the dynamic instruction scheduling.	(5)
	(b)	Explain the concept of in-order issue and out-of-order issue with respect to	(7)
		superscalar processor.	
18	a)	Explain any three latency hiding techniques used in distributed shared memory	(9)
		multi computers.	
	b)	Write a short note on fine-grain parallelism.	(3)
19	a)	Explain static branch prediction strategy and dynamic branch prediction	(6)
		strategy.	
	b)	With a neat diagram explain the architecture of ETL/EM-4 dataflow	(6)
		architecture.	
