

R5904

Scheme of Valuation/Answer Key

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY V SEMESTED B TECH DECREE EXAMINATION DECEMBER 201

V SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: CE309

Course Name: WATER RESOURCES ENGINEERING

Max. Marks: 100

Duration: 3 Hours

PART A											
		Answer any two full questions, each carries 15 marks.									
1	a)	Convective, orographic, cyclonic, frontal precipitation-discuss at least 3types									
	b)	 i. Determination of optimum number of rain gauges for an area –explanation with formulae and terms [N = (C_v/p)² p - permissible % error in estimating average rainfall C_v - coefficient of variance = S_x/p_{av} x100 S_x - standard deviation ; p_{av} - average rainfall of n existing rain gauge stations] 									
	c)	Total area = $10+11.2+11.6+9.3+8.4 = 50.5$ sq.km average depth of rainfall = $[10(25+30)/2+11.2(30+35)/2+11.6(35+40)/2$ +9.3(40+45)/2+8.4(45+50)/2]/50.5 = $1868.25/50.5 = 36.995$ cms									
2	a)) $P_A = 110mm$, $P_B = 90mm$ and $P_C = 70mm$; $N_X = 1000mm$, $N_A = 1100mm$, $N_B = 1200mm$, and $N_C = 1250 mm$ precipitation at X using Arithmetic mean method = $(P_A + P_B + P_C)/3$ = 90mm - 2 marks precipitation at X using Normal ratio method = $[P_A/N_A + P_B/N_B + P_C/N_C]Nx/3$ = 77mm-3 marks									
	b)	$ \begin{array}{l} k=2. \\ maximum infiltration rate f_{0}=2cm/hr \\ minimum infiltration rate f_{c}=0.5cm/hr \\ Infiltration rate at any time f = f_{c}+(f_{0}-f_{c})e^{-kt}=0.5+1.5e^{-2t}-2 \ marks \\ Substituting values for t, \\ \hline \hline Immode Immode$									
	c)	Discuss methods of base flow separation (2 methods), with sketches									

Remove Watermark

3	a)) φ index is 22mm/hr											
		duration of measurement = $30min = 0.5hr$											
		when rate of precipitation is less than φ index , no runoff occur - 1 mark											
		Runoff depth = $[(24-22) + (36-22) + (28-22)] \times 0.5 = 11 \text{mm} - 2 \text{ marks}$											
		Area of catchment = 30 km ²											
		runoff volume from the catchment = $(30 \times 10^6) \times (11/1000) = 33 \times 10^4 \text{ m}^3$											
		- 2marks											
	b)	S curve de	rivation-41	narks							(10)		
		Lag by 9hr	, differenc	e hydrogr	aph	- 3 r	narks						
		9hr UHO =diff. hydrograph ordinates x (6/9) - 3 marks											
			9hr										
			(hrs)	UHO	addition	S curve	hy 9hr	hydrograph	UHO				
			(1113)	m3/s	addition		0y m	nyurograph	m3/s				
			0	0	1 mil	0		0	0.00				
			3	9		9		9	6.00				
			6	20	0	20		20	13.33				
			9	35	9	44	0	44	29.33				
			12	49	20	69	9	60	40.00				
			15	43	44	87	20	67	44.67				
			18	35	69	104	44	60	40.00				
			21	28	87	115	69	46	30.67				
			24	22	104	126	87	39	26.00				
			27	17	115	132	104	28	18.67				
			30	12	126	138	115	23	15.33				
			33	9	132	141	126	15	10.00				
			36	6	138	144	132	12	8.00				
			39	3	141	144	138	6	4.00				
			42	0	144	144	141	3	2.00				
			45	0	144	144	144	0	0.00				
		L											
<u> </u>	1					PAR	ГВ						
				Answer a	ny two full	questions,	each carr	ies 15 marks.					
4	a)	Difference	between p	erennial a	and inundation	ion irrigatio	on				(3)		
<u> </u>	b)	Definition	of dutv an	d Delta				-2 m	arks		(6)		
1	- /	relationshi	p between	them - Δ	= 8.64B/D						x - /		
		Δ -delta in	m;, B- bas	e period i	n days ; D -	- duty in ha	a/cumec	-2 m	arks				
		Derivation	of relation	iship	•	2		- 2 m	arks				
	c)	gross com	mand area	= 2000 ha	l						(6)		
	,	Duty = 8.6	4B/Δ - 1 n	nark							~ /		
		intensity of	f irrigation	for wheat	t = 50%								
		area of irri	gation = 20	000 x 50/1	00 = 1000h	a							
1		kor period	= 15 days	kor depth	= 15 cm								
L	koi periou – 15 days koi depui – 15 cili												

		Duty = 8.64 x	15/0 15 =8	R64 ha/cum	ec								
	discharge required = area/duty = $1000/864 = 1.15$ cumec - 2 marks												
		intensity of irrigation for gram $= 30\%$.											
		area of irrigation = $2000 \times 30/100 = 600$ ha											
		kor period = 18 days kor depth = 12 cm											
		Duty = 8.64 x 18/0.12 = 1296 ha/cumec											
		discharge required = $area/duty = 600/1296 = 0.46cumec$ - 2 marks											
		total discharge required = <u>1.15 cumec</u> - 1 mark (Both are Rabi crops)											
5	a)	Explanation of different flooding methods of irrigation										(5)	
	b)	Definition of (i) root zone depth (ii) permanent wilting (ii) consumptive use (iv) conveyance										(4)	
		efficiency	ciency $4 \ge 1 = 4$ marks										
	c)	Area of crop =	rea of crop = 3000 ha; Field capacity of soil = 26%; Optimum moisture = 12%										
		permanent wi	ilting point	=10%; Ef	f. deptl	n of ro	ot zone =	80 cm;	relative d	lensity of	soil = 1.4;		
		frequency of a	rrigation =	10 days;	01	verall ef	$f_{1}c_{1}c_{1}c_{2}c_{3}$	= 23%.					
		$d_w = \gamma_{d.} d(F)$	$C-OMC)/\gamma$	$f_{w} = 1.4 \times 0.8$	6(0.26-0	.12) =	15.68cm						
		$C_u = 15.08/10$	$= \frac{1.508 \text{ Cl}}{2000 \text{ v} 10^4}$	$\underline{\mathbf{n}} = -3$ $\mathbf{x}(1.568/10)$	O)/(24x)	3600) -	-5 15m ³ /a	00 7	marks				
		Discharge of	-5000010	x(1.306/10) 5x100/23-	0)/(24x 23 605	.5000) - m ³ /sec	- <u>3.45111 /8</u> _ 1	<u>ec</u> – 2 mark	marks				
		Discharge of	canal – 3.4.	JX100/23-	43.075	III /Sec	- 1	i iiiai k					
6	a)	stage discharg	ge curve - s	ketch				-	2 marks	F		(4)	
			- di	scussion					2 marks	<u> </u>			
	b)) objectives of river training (at least 4) – listing only– 2 marks										(5)	
	-)	repelling, attracting and deflecting groynes (with sketch) – 3 marks											
	C)	area is computed by multiplying depth of flow at vertical by width of strip which is taken halfway											
		to adjacent verticals on entirer side											
		Distance	$\begin{array}{ccc} ce & flow \\ depth(d) & depth \\ depth(d) & depth \\ depth(d) & depth \\ $										
		from bank	m	depth m	rev	sec			m/s	m	•		
		0	0	-	-	-	-	<u></u>	-	-	-		
	0.8 0.5 0.3 12 48 0.25 0.125 0.125							0.4	0.050				
1.6 1 0.8 23 52 0.44 0.183						0.222	0.8	0.178					
		-	-	0.2	36	51	0.71	0.262					
		2.4	1.6	1.28	27	54	0.50	0.200	0.228	1.12	0.255		
								0.255					
			1.9	1.44	28	53	0.53	0.208	0.238	1.26	0.300		
		3	1.0		_	1		0.200		1.20		1	
		3	-	0.36	42	58	0.72	0.267					
		3	- 1.0	0.36	42 24	58 50	0.72	0.267	0 227	0.07	0.218		
		3 - 3.8	- 1.2	0.36	42 24 35	58 50	0.72	0.267	0.227	0.96	0.218		
		3 	1.0 - 1.2 -	0.36 0.96 0.24	42 24 35	58 50 50	0.72 0.48 0.70	0.267 0.194 0.260	0.227	0.96	0.218		
		3 		0.36 0.96 0.24 0.36	42 24 35 14	58 50 50 45	0.72 0.48 0.70 0.31	0.267 0.194 0.260 0.143	0.227	0.96	0.218		

measured at 0.8d and 0.2 d. So the average velocity has to be calculated using the corresponding velocities at 0.8 d and 0.2d.At the banks, Average velocity at the Banks is the velocity corresponding to 0.6d.Area is computed by multiplying depth of flow at vertical by width of strip which is taken halfway to adjacent verticals on either side)
*As the given question is an above average question, full credit is to be given, if correct steps are followed by the candidate

PART C												
Answer any two full questions, each carries 20 marks.												
7	a)	Flow d	uration curve - fig	5	- 2 ma	- 2 marks						
			-	Explanation	- 2 n	- 2 marks						
		- Applications - 2 marks										
	b)	Explanation of process of reservoir sedimentation -3 marks										
		Control measures of reservoir sedimentation -3 marks										
	c)	determining reservoir capacity fig of mass curve showing salient points-3 marks										
		step by step procedure -5 marks										
8	a)	various factors affecting selection of site for a reservoir (at least 6 factors)										
	b)	initial c	capacity =50 milli	on cu.m, ave	erage infl	ow rate $= 50$	million cu.m			(9)		
		annual	sediment inflow =	= 300,000 to	ns, densi	ty of sedimen	$t = 1250 \text{kg/m}^3$	3				
		vol. of	sediment inflow S	S = 300,000	x1000/12	250 =0.24 x10	⁶ m ³ /year					
		sedime	nt trapped $St = S$	xn- 3 marks				nt				
							me					
			capacity	capacity	n	av.ŋ	St	years to				
		%	vol (x10° m3) /inflow				$(x10_6 m3)$	fill(10/st)				
		100	50		0.977							
					0.9735	0.234	42.7					
		80	40	0.8	0.97	<u> </u>						
		(0)	20	0.6	0.00	0.965	0.2316	43.2				
		60	60 <u>30</u> 0.6	0.90	0.055	0 2202	43.6					
		40	20	0.4	0.95	0.955	0.2292	43.0				
		10			0.70							
		20	10	0.2	0.92	0.935	0.224	44.6				
								<u> </u>				
		Dofinit	ion of Dorosity of	acific viold	spacifia	174.1years	mortza	-6 marks		(5)		
	C)	relation	between them [perinc yield	,specific	retention5 I		ordeo		(5)		
0		Dorou'	i between them []	$potosity = s_{1}$	$y + S_r$		-2 m	arks		(5)		
9	a)	Darcy s law - statement -1 marks								(3)		
			-Formula	n			-1 I	narks				
<u> </u>	b)	avpross	vion for stoody red	u lial flow in a	confined	l aquifor fi	-3 11	141 85		(8)		
	0)	express	$\frac{1000}{100} = \frac{100}{100} = \frac{100}{100}$	$2\pi T(a a)^{1}$	og(r/r)	1 aquirer – 11g	5-∠ 111a1KS ⊃	marks		(0)		
		_	Derivation steps	$2[11(s_2-s_1)/1]$	$0g_{e}(1_{1}/1_{2})$	1	-2	11141 85				
<u> </u>	c)	$-C^{\Lambda}$	H ₋ 1 mark							(7)		
	()	$\mathbf{Q} = \mathbf{C}\mathbf{A}$ h. – 25	$0_{-}243 - 7m \cdot h_{-} - 1$	$250_{-}2/15 - 5$	m							
		$h_1 = 250-243 = /m; h_2 = 250-245 = 5m$										

* t = 2hr; H = 3m; A = $\prod(5^2)/4 = 19.64m^2$ * (As the diameter of the well is not specified in the question, full credits may be given to those calculated with any assumed diameter) - 2 marks C = 2.303(log₁₀ (h₁/h₂)/t - 1 mark =0.1683/hr - 2 marks Q = <u>9.918m³/s = 2.755litres/sec</u>- 1 mark ****

