

3	a)	$\begin{aligned} & \varphi \text { index is } 22 \mathrm{~mm} / \mathrm{hr} \\ & \text { duration of measurement }=30 \mathrm{~min}=0.5 \mathrm{hr} \\ & \text { when rate of precipitation is less than } \varphi \text { index, no runoff occur }-1 \text { mark } \\ & \text { Runoff depth }=[(24-22)+(36-22)+(28-22)] \times 0.5=\underline{\mathbf{1 1 m m}}-2 \text { marks } \\ & \text { Area of catchment }=30 \mathrm{~km}^{2} \\ & \text { runoff volume from the catchment }=\left(30 \times 10^{6}\right) \times(11 / 1000)=\frac{\mathbf{3 3 \times 1 \mathbf { 1 0 } ^ { 4 } \mathbf { m } ^ { 3 }}}{-2 \text { marks }} \end{aligned}$							(5)
	b)	S curve derivation-4marks Lag by 9hr, difference hydrograph -3 marks 9hr UHO = diff. hydrograph ordinates x (6/9) -3 marks							(10)
		Time (hrs)	$\begin{gathered} \hline 6 \mathrm{hr} \\ \mathrm{UHO} \\ \mathrm{~m} 3 / \mathrm{s} \\ \hline \end{gathered}$	S curve addition	S curve	lagged by 9 hr	difference hydrograph	9hr UHO $\mathrm{m} 3 / \mathrm{s}$	
		0	0		0		0	0.00	
		3	9		9		9	6.00	
		6	20	0	20		20	13.33	
		9	35	9	44	0	44	29.33	
		12	49	20	69	9	60	40.00	
		15	43	44	87	20	67	44.67	
		18	35	69	104	44	60	40.00	
		21	28	87	115	69	46	30.67	
		24	22	104	126	87	39	26.00	
		27	17	115	132	104	28	18.67	
		30	12	126	138	115	23	15.33	
		33	9	132	141	126	15	10.00	
		36	6	138	144	132	12	8.00	
		39	3	141	144	138	6	4.00	
		42	0	144	144	141	3	2.00	
		45	0	144	144	144	0	0.00	
					PAR				
			Answer	y two fult	uestions,	each carr	es 15 marks.		
4	a)	Difference betwee	erennial	nd inunda	on irrigati				(3)
	b)	Definition of duty relationship betwe Δ-delta in m;, BDerivation of relat	Delta hem - Δ period ship	$\begin{aligned} & =8.64 \mathrm{~B} / \mathrm{D} \\ & \mathrm{n} \text { days } ; \mathrm{D} \end{aligned}$	- duty in h	cumec	$\begin{gathered} -2 \mathrm{n} \\ -2 \mathrm{n} \\ -2 \mathrm{~m} \end{gathered}$		(6)
	c)	gross command ar Duty $=8.64 \mathrm{~B} / \Delta-$ intensity of irrigat area of irrigation $=$ kor period = 15 da	2000 h ark for whea $00 \times 50 /$ or depth	$\begin{aligned} & =50 \% \\ & 00=1000 \mathrm{~h} \\ & =15 \mathrm{~cm} \end{aligned}$					(6)


		```Duty \(=8.64 \times 15 / 0.15=864\) ha/cumec discharge required \(=\) area/duty \(=1000 / 864=\mathbf{1 . 1 5}\) cumec \(\quad-2\) marks intensity of irrigation for gram \(=30 \%\). area of irrigation \(=2000 \times 30 / 100=600 \mathrm{ha}\) kor period \(=18\) days kor depth \(=12 \mathrm{~cm}\) Duty \(=8.64 \times 18 / 0.12=1296\) ha/cumec discharge required \(=\) area/duty \(=600 / 1296=0.46\) cumec \(\quad-2\) marks total discharge required \(=\underline{\mathbf{1 . 1 5}}\) cumec- 1 mark (Both are Rabi crops)```										
5	a)	Explanation of different flooding methods of irrigation										(5)
	b)	Definition of (i) root zone depth (ii) permanent wilting (ii) consumptive use (iv) conveyance efficiency $4 \times 1=4$ marks										(4)
	c)	```Area of crop \(=3000\) ha; Field capacity of soil \(=26 \%\); Optimum moisture \(=12 \%\) permanent wilting point \(=10 \%\); Eff. depth of root zone \(=80 \mathrm{~cm}\); relative density of soil \(=1.4\); frequency of irrigation \(=10\) days; \(\quad\) overall efficiency \(=23 \%\). \(\mathrm{d}_{\mathrm{w}}=\gamma_{\mathrm{d} . \mathrm{d}} \mathrm{d}(\mathrm{FC}-\mathrm{OMC}) / \gamma_{\mathrm{w}}=1.4 \mathrm{x} 0.8(0.26-0.12)=15.68 \mathrm{~cm}\) \(\mathrm{C}_{\mathrm{u}}=15.68 / 10=\underline{\mathbf{1 . 5 6 8} \mathbf{~ c m}} \quad-3\) marks Discharge \(=3000 \times 10^{4} \times(1.568 / 100) /(24 \times 3600)=\mathbf{5 . 4 5 m} \mathbf{m}^{3} / \mathrm{sec} \quad-2\) marks Discharge of canal \(=5.45 \times 100 / 23=23.695 \mathrm{~m}^{3} / \mathrm{sec} \quad-1\) mark```										(6)
6	a)	stage discharge curve - sketch -2 marks   - discussion -2 marks										(4)
	b)	objectives of river training (at least 4) - listing only-2 marks repelling, attracting and deflecting groynes (with sketch)										(5)
	c)	area is computed by multiplying depth of flow at vertical by width of strip which is taken halfway to adjacent verticals on either side										(6)
		Distance from bank	$\begin{gathered} \text { Flow } \\ \text { depth } \mathbf{d}) \\ \mathbf{m} \end{gathered}$	Meter depth $m$	$\begin{gathered} \text { no. } \\ \text { of } \\ \text { rev } \end{gathered}$	time sec	N rev/s	v m/s	$\begin{aligned} & \mathbf{V}_{\mathrm{av}} \\ & \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{gathered} \text { area } \\ \mathbf{m}^{2} \end{gathered}$	q m $3 / \mathrm{s}$	
		0	0			-	-		-	-	-	
		0.8	0.5	0.3	12	48	0.25	0.125	0.125	0.4	0.050	
		1.6	1	0.8	23	52	0.44	0.183	0.222	0.8	0.178	
		-	-	0.2	36	51	0.71	0.262				
		2.4	1.6	1.28	27	54	0.50	0.200	0.228	1.12	0.255	
		-	-	0.32	41	60	0.68	0.255				
		3	1.8	1.44	28	53	0.53	0.208	0.238	1.26	0.300	
		-	-	0.36	42	58	0.72	0.267				
		3.8	1.2	0.96	24	50	0.48	0.194	0.227	0.96	0.218	
		-	-	0.24	35	50	0.70	0.260				
		4.6	0.6	0.36	14	45	0.31	0.143	0.143	0.48	0.069	
		5.2	0	-	-	-	-	-	-	-	-	
		$1.069$   *(Velocity using current meter is measured at 0.6 d near two banks. At other verticals ,it is										


		measured at $0.8 d$ and 0.2 d . So the average velocity has to be calculated using the corresponding velocities at 0.8 d and $0.2 d$. At the banks, Average velocity at the Banks is the velocity corresponding to $0.6 d$. Area is computed by multiplying depth of flow at vertical by width of strip which is taken halfway to adjacent verticals on either side)   *As the given question is an above average question, full credit is to be given, if correct steps are followed by the candidate						
PART C								
Answer any two full questions, each carries 20 marks.								
7	a)	Flow duration curve - fig   - Explanation   - Applications				$\begin{aligned} & -2 \text { marks } \\ & -2 \text { marks } \\ & -2 \text { marks } \end{aligned}$		(6)
	b)	Explanation of process of reservoir sedimentation Control measures of reservoir sedimentation				$\begin{aligned} & \hline-3 \text { marks } \\ & -3 \text { marks } \\ & \hline \end{aligned}$		(6)
	c)	determining reservoir capacity fig of mass curve showing salient points-3 marks step by step procedure -5 marks						(8)
8	a)	various factors affecting selection of site for a reservoir (at least 6 factors)						(6)
	b)	initial   annual   vol. of   sedime$\%$   100   80   60   40   20	capacity $=50 \mathrm{mi}$ sediment inflow sediment inflow nt trapped $\mathrm{St}=$	on cu.m, average inf 300,000 tons, dens $=300,000 \times 1000 / 12$   $x \eta-3$ marks	w rate $=$ of sedim $50=0.24 x$ $\qquad$   av. $\eta$   0.9735   0.965   0.955   0.935   174.1yea	illion cu.m   $=1250 \mathrm{~kg} / \mathrm{m}$   $\mathrm{m}^{3} / \mathrm{year}$St   $\left(\mathrm{x} 10_{6} \mathrm{~m} 3\right)$0.2340.23160.2292	years tofill(10/st) $4^{42.7}$43.2   43.6   44.6   -6 marks	(9)
	c)	Definition of Porosity, specific yield ,specific retention.-3 marks relation between them [ porosity $=\mathrm{s}_{\mathrm{y}}+\mathrm{S}_{\mathrm{r}}$ ]   -2 marks						(5)
9	a)	Darcy's law - statemen   -Formula   -Derivati				-1 marks-1 marks-3 marks		(5)
	b)	expression for steady radial flow in a confined aquifer - fig-2 marks   - Expression $\left[\mathrm{Q}=2 \Pi \mathrm{~T}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right) / \log _{\mathrm{e}}\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)\right]$   -2 marks   - Derivation steps-4 marks						(8)
	c)	$\begin{aligned} & \mathrm{Q}=\text { CAH }-1 \text { mark } \\ & \mathrm{h}_{1}=250-243=7 \mathrm{~m} ; \mathrm{h}_{2}=250-245=5 \mathrm{~m} \end{aligned}$						(7)


	$\mathrm{t}=2 \mathrm{hr} ; \mathrm{H}=3 \mathrm{~m} ; \mathrm{A}=\Pi\left(5^{2}\right) / 4=19.64 \mathrm{~m}^{2}$   ( As the diameter of the well is not specified in the question, full credits may be given to those calculated with any assumed diameter) - 2 marks $\begin{array}{lr} \mathrm{C}=2.303\left(\log _{10}\left(\mathrm{~h}_{1} / \mathrm{h}_{2}\right) / \mathrm{t}\right. & -1 \mathrm{mark} \\ =0.1683 / \mathrm{hr} & -2 \mathrm{marks} \\ \mathrm{Q}=\underline{\mathbf{9 . 9 1 8 m}}{ }^{3} / \mathbf{s}=\mathbf{2 . 7 5 5 l i t r e s} / \mathbf{s e c}-1 \mathrm{mark} & \end{array}$		
****			

