R5904

Reg No.:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY V SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: CE309

Course Name: WATER RESOURCES ENGINEERING

Max. Marks: 100

.....

Duration: 3 Hours

Graph sheets may be provided

PART A

Answer any two full questions, each carries 15 marks.

Name:

1	a)	What are the different types of precipitation?												
	b)	How wi	How will you determine optimum number of rain gauges for an area?											
c) The areas enclosed by the adjacent isohyets of a catchment are given in table below. Determine the average depth of rainfall.														
			Isohyets (cms)	25 - 30	30 - 35	35 - 40	40 - 45	45 - 50						
			Area (sq.km)	10.0	11.2	11.6	9.3	8.4						
2	 a) The respective storm totals at three surrounding stations A, B and C are 110, 90 and 70 mm. If the normal annual precipitation amounts at stations X, A, B and C are respectively 1000, 1100, 1200 and 1250 mm, estimate the missing storm precipitation at station X using arithmetic mean method and normal ratio method. 													
	1 \	TC 41	1 01 1 11	, ,	,	2 1.4		1		$(\cap $				

- b) If the value of k in Horton's equation is 2 and the maximum and minimum (6) infiltration rates observed are 2 cm/hr and 0.5 cm/hr respectively, find the infiltration rates at 30minutes interval and plot the infiltration rate curve.
- With neat sketches discuss any two methods of base flow separation. (4) c)
- The rate of precipitation observed over a catchment of 30km² for successive 30 (5) 3 a) min are 16, 20, 24, 36, 28, 12 and 4mm/hr. If the φ index is 22mm/hr, find the runoff volume in m^3 from the catchment.
 - b) A 6 hr UH ordinates for a basin are given below. Derive the 9 hr UH ordinates using S curve method

Time (hrs)	0	3	6	9	12	15	18	21	24	27	30	33	36	39	42
6hr UHO m ³ /s	0	9	20	35	49	43	35	28	22	17	12	9	6	3	0

PART B Answer any two full questions, each carries 15 marks.

- a) Differentiate between perennial and inundation irrigation. (3) 4
 - b) Define Duty and Delta and derive the relationship between them. (6)
 - The gross command area for a distributory is 2000 ha. The intensity of irrigation (6)c)

Marks

(10)

for wheat is 50% and that for gram is 30%. Gram has a kor period of 18 days and a kor depth of 12 cm and Wheat has a kor period of 15 days and a kor depth of 15 cm. Determine the discharge required in the distributory.

(5)

(4)

(6)

- b) Define the terms (i) root zone depth (ii) permanent wilting (ii) consumptive use (4) (iv) conveyance efficiency.
- c) A certain crop is grown in an area of 3000 ha fed by a canal system. Field (6) capacity of soil is 26%, Optimum moisture is 12% and permanent wilting point is 10%. Effective depth of root zone is 80 cm and relative density of soil is 1.4. If the frequency of irrigation is 10 days and overall efficiency is 23%, find (i) daily consumptive use and (ii) discharge required at the head of the canal in m³/sec.

6 a) With a neat sketch discuss stage discharge curve.

- b) List the objectives of river training. Discuss repelling, attracting and deflecting (5) groynes.
- c) The current meter readings taken during gauging of a stream are given in the (6) table below. The current meter rating is given as v=0.05 + 0.3N, v in m/s and N in rev/s. Compute the discharge in the stream.

Distance from bank m	0.8	1.6	1.6	2.4	2.4	3	3	3.8	3.8	4.6	5.2
Flow depth m	0.5	1	1	1.6	1.6	1.8	1.8	1.2	1.2	0.6	0
Meter depth m	0.3	0.8	0.2	1.28	0.32	1.44	0.36	0.96	0.24	0.36	-
no. of revs	12	23	36	27	41	28	42	24	35	14	-
time sec	48	52	51	54	60	53	58	50	50	45	-

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) What is Flow duration curve? What are its practical applications? (6)
 - b) Explain process of reservoir sedimentation and control measures for reducing it. (6)
 - c) Explain the step by step procedure for determining reservoir capacity from mass (8) inflow curve.
- 8 a) What are the various factors affecting selection of site for a reservoir.
 - b) The data regarding trap efficiency and capacity inflow ratio of a reservoir is given (9) in the table below.

capacity/inflow	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
trap efficiency, η (%)	86	92	94	95	95.5	96	96.5	97	97.4	97.7

Derive the useful life of reservoir with an initial capacity of 50 million cu. m, if average inflow rate is 50 million cu. m and annual sediment inflow is 300,000 tons. Assume density of sediment as1250 kg/m³. Useful life terminates when

R5904

(5)

capacity reduces to 20%.

c)	Define Porosity,	specific	yield,	specific	retention.	Write	the	relation	between	(5)
	them.									

- 9 a) State and derive Darcy's law.
 - b) Derive an expression for steady radial flow in a confined aquifer. (8)
 - c) A recuperation test in an open well yielded the following water levels: (7) Initial water table level 250.00m; water table level when pumping was stopped 243.00m; water table level in well 2hr after pumping was stopped 245.00m Find the safe yield of the well if working head is 3m.
