R5944

Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: EE303

Course Name: LINEAR CONTROL SYSTEMS

PART A

Max. Marks: 100

Duration: 3 Hours

Answer all questions, each carries 5 marks.

1	Derive the closed loop transfer function for a non-unity feedback system. (
2	Write short notes on Force- voltage and Force – current analogy? (5)									
3	Check the stability of the system given by the characteristic equation	(5)								
	$P(s) = s^{5} + 2s^{4} + 4s^{3} + 8s^{2} + 16s + 32$									
4	What is magnitude and angle criterion? Determine whether the points $(-4+j2)$ is on the root locus of a unity feedback system with forward transfer function	(5)								
	$G(s) = \frac{K(s+2)}{s^2 + 4s + 13} ?$									
5	Define any three frequency response specifications used for the design of control system?	(5)								
6	Explain how the stability of a system is analysed using Bode plot?									
7	State and explain Nyouist stability criterion?									

8 Sketch the polar plot of type 1 second order system?

PART B Answer any two full questions, each carries 10 marks.

9 a) Obtain the transfer function using block diagram reduction techniques. (5)

b) Derive the transfer function for the mechanical system shown in figure.

Page 1 of 3

Pages: 3

Marks

(5)

(5)

R5944

- 10 a) Derive an expression for the step response of a critically damped second order (4) system?
 - b) Determine the value of gain K and the natural frequency of oscillation ω_n for (6) the unity feedback system with forward transfer function $G_p(s) = \frac{K}{s(s+10)}$, which results in a critically damped response when subjected to a unit step input.
- 11 a) A unity feedback system is characterised by an open loop transfer function (5) $G_p(s) = \frac{20}{s^2 + 5s + 5}$. Determine the transient response when subjected to a unit step input and sketch the response. Evaluate the maximum overshoot and the corresponding peak time of the system.
 - b) For the signal flow graph shown below, determine the transfer function. (5)

PART C Answer any two full questions, each carries 10 marks.

12 a) Consider a unity feedback system with an open loop transfer function $\frac{K}{s(s+20)}$. (5) Determine the value K which would result in a steady state error of 0.05 for a

unit ramp input.

- b) Using Routh-Hurwitz criterion determine the value of K for which the closed (5) loop system transfer function $\frac{K}{s^3 + 20s^2 + 80s + K}$ is stable, marginally stable and unstable.
- 13 Sketch the root locus of a negative feedback system whose open loop transfer (10) function is given by $\frac{K(s+4)}{s(s+1)(s+2)}$. Determine the range of K for which the closed loop system is stable.
- 14 a) Determine the dynamic error coefficients for a unity feedback system whose (6) open loop transfer function is $\frac{20}{s(s+10)}$, when subjected to an input of $r(t) = 2 + t + 3t^2$. Also compute the steady state error of the system.
 - a) Discuss about the effect of addition of poles and zeros to the open-loop transfer (4)

R5944

function G(s) H(s) on the root locus.

PART D

Answer any twofull questions, each carries 10 marks.

15	a)	The	open-loop	transfer	function	of	а	unity	feedback	system	is	(10)
		$\overline{s(0.5)}$	$\frac{K}{(s+1)(0.04s+1)}$	$\overline{(+1)}$. Use a	symptotic	appr	oacl	n to plo	t the bode	diagram a	and	
		deter	mine the val	ue of K for	r a gain ma	rgin	of 1	0.5 dB				
16		Draw	the polar pl	ot of open	loop trans	fer fi	unct	ion $\frac{1}{(s+1)}$	$\frac{6}{(1)(s+2)}$ and	nd determ	ine	(10)
		the pl	hase margin	and gain m	argin.							
17	a) b)	What is transportation lag in control system?							(4)			
		Draw the bode plot for the transfer function given by $\frac{5(s+2)}{s(s+10)}$. Comment on							(6)			
		the st	ability of the	system								

•