Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: ME305

Course Name: COMPUTER PROGRAMMING AND NUMERICAL METHODS

Max. Marks: 100
Duration: 3 Hours

PART A
 Answer any three full questions, each carries 10 marks.

1 a) Explain six different built in data types used in C++ with its limits.
b) Differentiate between assignment operator and equality operators.

2 a) List and explain different types of operators used in C++
b) Explain basic structure of a C++ program

3 a) Explain different control structures used in C++
b) Differentiate break and continue statements.

4 a) Write a C++ program of find out sum of first " n " natural numbers.
b) Explain function overloading with an example

PART B

Answer any three full questions, each carries 10 marks.
5 a) Write a $\mathrm{C}++$ program to find factorial of number
b) Write a C++ program to receive 10 numbers in an array and to sort it in ascending order.

6 a) Write a $\mathrm{C}++$ program to multiply two 5×5 matrices
b) Differentiate between function call by value and reference

7 a) Explain class and objects with help of examples
b) What are the access specifiers in C++?

8 a) Explain inheritance and derived classes using examples
b) Differentiate member functions and data members

PART C
Answer any four full questions, each carries 10 marks.
9 a) Write a C++ program for solving a system of linear equations by any one numerical method.
b) Differentiate between round off error and truncation error.

10 Solve the system of liner equations by Gauss elimination method

$$
\begin{aligned}
& 3 x-2 y+8 z=9 \\
& -2 x+2 y+z=3 \\
& x+2 y-3 z=8
\end{aligned}
$$

11 Solve this system of equations with Gauss-Seidel iterative method

$$
\begin{array}{ll}
4 x_{1}+x_{2}-x_{3} & =3 \\
2 x_{1}+7 x_{2}+x_{3} & =19 \\
x_{1}-3 x_{2}+12 x_{3} & =31
\end{array}
$$

12 Fit a straight line to the following set of data. Also calculate correlation coefficient for the data and comment on the results.

x	1	2	3	4	5	6	7
y	0.5	2.5	2.0	4.0	3.5	6.0	5.5

13 Derive finite difference approximation equations for Laplace equation
14 Find out temperature at points $1,2,3 \& 4$ on a square domain using finite difference approximation method corresponding to the boundary conditions as below.

