Re	g No	Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018	
		Course Code: EC303	
		Course Name: APPLIED ELECTROMAGNETIC THEORY	
Ma	Iarks: 100Duration:	aration: 3 Hours	
		Smith Chart to be supplied.	
		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	Point charges 5 nC and -2 nC are located at (2,0, 4) and (-3,0, 5), respectively. (i) Determine the force on a 1nC point charge located at (1, -3, 7). (ii) Find the electric field E at (1, -3, 7).	(7)
	b)	State and explain Maxwell's equations in the integral and differential forms.	(8)
2	a)	Give Poisson's and Laplace equation in electrostatics. Give application	(7)
	b)	A plane wave propagating through a medium with $\varepsilon_r = 8 \ \mu_r = 2$ has $E = 0.5e^{-z/3} \sin(10^8 t - \beta z) \ a_x \ V/m$. Determine (i) β (ii) The loss tangent (iii) Intrinsic impedance (iv) Wave velocity	(8)
3	a)	(v) H field Derive the expression of capacitance of two wire transmission line.	(8)
	b)	State and prove boundary conditions for E and H in accordance with Maxwell's equations.	(7)

PART B

Answer any two full questions, each carries 15 marks.

4	a)	In free space, H = 0.2 cos (ωt — β x) a _z A/m. Find the total power passing	(8)
		through:	
		(i) A square plate of side 10 cm on plane $x + z = 1$	
		(ii) A circular disc of radius 5 cm on plane $x = 1$.	
	b)	Derive an expression for characteristic impedance of a transmission line and	(7)

- show that it is resistive at radio frequencies.
- 5 a) What is polarisation? Explain the different types of Polarisation? (7)
 - b) A telephone line has R = 30Ω/km, L= 100mH/km, G=0,and C= 20µF/KM. At f=1 KHz, obtain: i) Characteristic impedance ii) propagation constant iii) phase velocity.
- 6 a) Derive the expression for the ratio of reflected to incident electric field strength (7.5) for an insulator with oblique incidence.

b) Derive the expression of input impedance due to a transmission line terminated (7.5) by a load .Also find the expression for SWR.

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Derive the expression for r-circles and x-circles in Smith chart. (10)
 - b) Determine ,assuming TE₁₀ mode of propagation ,the cut-off frequency, cut-off (10) wavelength, guide wavelength ,phase constant, phase velocity, group velocity and wave impedance in the case of a hollow rectangular metallic waveguide of dimensions 6cm and 3 cm ,respectively, when the applied signal frequency is 5GHz
- 8 a) A $100 + j150 \Omega$ load is connected to a 75 Ω lossless line. Using Smith Chart, (10) find:
 - (i) Γ
 - (ii) s
 - (iii) The load admittance Y_L
 - (iv) Z_{in} at 0.4 λ from the load

b) Obtain the waveguide solution to Maxwell's wave equations (10)

- 9 a) Explain single stub matching using analytical method. (10)
 - b) A hollow rectangular waveguide has dimensions of a= 4cm and b= 2cm. (10)
 Calculate the amount of attenuation if the frequency is 3.5 GHz. Assume dominant mode.
