\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: ME202
 Course Name: ADVANCED MECHANICS OF SOLIDS (ME)

Max. Marks: 100
Duration: 3 Hours

PART A
 Answer any three questions. Each question carries 10 marks.

1 The state of stress at a point is characterised by the components, $\sigma_{x}=12.31, \sigma_{y}=8.96, \sigma_{z}=4.34, \tau_{x y}=4.20, \tau_{y z}=5.27, \tau_{x z}=0.84 \mathrm{MPa}$.
Determine the values of principal stresses and maximum shear stress.
a) State St. Venant's principle for end effects.
b) Write down the generalized Hooke's law for a linear elastic isotropic material
c) What is meant by octahedral plane?
d) What is plane stress?
a) If the displacement field is given by $U=\left(x^{2}+y\right) \mathbf{i}+(3+z) \mathbf{j}+\left(x^{2}+2-y\right) \mathbf{k}$ Write down the strain tensor at the point $(3,2,-1)$
b) Corresponding to the above, determine the strain in the direction (5) $n_{x}=n_{y}=n_{z}=\frac{1}{\sqrt{3}}$
a) Investigate whether the following polynomial is permissible as an Airy's stress function
$\phi=A\left(x y^{2}-\frac{3}{4} x y B^{3}\right)$. If permissible, derive the expressions for stress.
b) Write a note on stress transformation.

PART B
 Answer any three questions. Each question carries 10 marks

5 a) What is meant by shear centre?
b) Explain the term "complementary strain energy"
b) Give the expressions for strain energy due to torsion

6 a) Write down the differential equation of equilibrium in polar co-ordinate system in 2-dimensions.
b) What are the initial assumptions taken while solving problems of rotating circular discs
7 A cantilever of rectangular cross section of breadth 4 cm and depth 6 cm is subjected to an inclined load W at free end as shown in figure. The length of cantilever is 2.5 m and the angle of inclination of the load with vertical is 25°. What is the maximum value of W if the maximum stress due to bending is not to exceed $200 \mathrm{~N} / \mathrm{mm}^{2}$.

a) A thick walled tube with an internal radius of 12 cm is subjected to an internal pressure of 200 MPa . $\left(\mathrm{E}=2.1 \times 10^{5} \mathrm{MPa}\right)$ and $\left.v=0.3\right)$. Determine the optimum value of the external radius if the maximum shear stress developed is limited to 350 MPa .
b) Determine the change in internal radius due to the applied pressure.

PART C

Answer any four questions. Each question carries 10 marks.

a) Obtain the general expression for strain energy in terms of components of stress.
b) Explain the Maxwell reciprocal theorem.

10 The cantilever beam supports a uniformly distributed load w and a concentrated load P as shown in figure. Also it is given that $L=2 \mathrm{~m}, w=4 \mathrm{kN} / \mathrm{m}, P=6 \mathrm{kN}$ and $E I=5 \mathrm{MN} . \mathrm{m}^{2}$. Determine the deflection at the free end using Castigliano's theorem.

11 A rod with rectangular cross section is used to transmit torque to a machine frame (see figure). It has a width of 40 mm . The first 3.0 m length of rod has a depth of 60 mm and the remaining 1.5 m length has a depth of 30 mm . The rod is made of steel having $G=77.5 \mathrm{GPa}$. Given $T_{1}=750 \mathrm{Nm}$ and $T_{2}=400 \mathrm{Nm}$, determine the maximum shear stress in the rod. Also determine the angle of twist of the free end.

12 a) A shaft of square section of outer side 55 mm and inner side 50 mm is subjected
to a twisting moment such that the maximum shear stress developed is $250 \mathrm{~N} / \mathrm{mm}^{2}$. What is the torque acting on the shaft and what is the angular twist if the shaft is 1.6 m long and $\mathrm{G}=70000 \mathrm{~N} / \mathrm{mm}^{2}$
13 a) Explain membrane analogy
b) What is meant by warping function?
c) Define the term shear flow.

14 A hollow thin wall torsion member has two compartments with cross sectional dimensions as given in figure. The material is an aluminium alloy having $G=26 \mathrm{GPa}$. Determine the torque if the maximum shear stress is 40 MPa .

