Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018
Course Code: EC202
Course Name: SIGNALS \& SYSTEMS
Max. Marks: 100 Duration: 3 Hours

PART A
 Answer any two questions

1 a) Observe the given signal and sketch the following:
(i) $y(n)=2 x(-2 n+1)$
(ii) $z(n)=-x\left(\frac{n}{2}-2\right)$

b) Compute the power and energy of the following signals and check whether they are power signals or energy signals
(i) $x(n)=\left(\frac{1}{3}\right)^{n} u(n)$
(ii) $y(t)=\left(1+e^{-5 t}\right) u(t)$
c) Define, sketch and list the properties of continuous time impulse function.

OR
2 a) Find the convolution of the given signals and sketch the result:

b) Find the convolution of the following sequences using matrix multiplication method
$x(n)=\{1,-\underset{\uparrow}{-2,3,1\}} \quad y(n)=\{2,-\underset{\uparrow}{3},-2\}$
3 a) Show that any signal can be represented as the summation of an odd and an even signal. Write down the expression for the odd and even components of the signals $x(t)$ and $x(n)$. Find the odd and even components of the signal $x(n) \underset{\uparrow}{=}\{-2,1,2,-1,3\}$
b) Find the convolution of the following signals and plot the result:

$$
x(n)=\left(\frac{1}{3}\right)^{-n} u(-n-1) \quad h(n)=u(n-1)
$$

PART B

Answer any two questions

4 a) Obtain the fourier series representation of the given waveform. Plot magnitude 8 spectrum.

b) Find the CTFT of the signal $x(t)=t e^{-a t} u(t)$ using an appropriate property. 7 State and prove the property used.
5 a) Find the response of a system with transfer function $H(s)=\frac{1}{(s+1)(s+0.5)}$ for unit step input.
b) A causal LTI system is described by the relation
$\frac{d^{2} y(t)}{d t^{2}}+6 \frac{d y(t)}{d t}+8 y(t)=2 x(t)$
Find the impulse response of the system applying Fourier Transform
c) Obtain the transfer function of an ideal integrator in s domain.

6 a) Find the inverse Laplace transform of the following function:
$X(s)=\frac{3 s^{2}+8 s+6}{(s+2)\left(s^{2}+2 s+1\right)}, \operatorname{Re}(s)>-1$
b) Find the Fourier transform of unit step function
c) State and prove Parseval's theorem for Fourier series.

PART C
 Answer any two questions

7 a) Show that Fourier transformof the signal
$x(n)=\sin \left(\frac{\pi n}{2}\right) u(n)$
is given by $X\left(e^{j \omega}\right)=\frac{e^{-j \omega}}{1+e^{-j 2 \omega}}$
b) Find the z-transform and ROC of the following signals:
(i) $x(n)=a^{|n|} ;|a|<1$
(ii) $y(n)=\frac{1}{2} n^{2}\left(\frac{1}{3}\right)^{n-1} u(n-1)$
c) Prove that convolution in time domain is equivalent to multiplication in Z 4 domain

8 a) Determine the impulse response of the following system using Fourier 8 Transform method: $y(n)-\frac{1}{6} y(n-1)-\frac{1}{6} y(n-2)=x(n)$
b) Plot the pole-zero diagram and asses the stability of the following system: $y(n)=y(n-1)-0.5 y(n-2)+x(n)+x(n-1)$
c) Find the DTFT of the signal if z -transform is given by

$$
X(z)=\frac{z}{(z-0.2)(z+0.9)}
$$

9 a) A discrete time LTI system is characterised by the impulse response
$h(n)=\left(\frac{1}{2}\right)^{n} u(n)$ Use Fourier transform to determine the response of the system to the input $x(n)=\left(\frac{3}{4}\right)^{n} u(n)$
b) Determine the z-transform and plot the ROC of the signal starting from 8 definition of z-transform

$$
x(n)=a^{n} u(n)-b^{n} u(-n-1)
$$

c) Establish the correspondence between s-plane and z-plane

