

6	a)	Construct ILD for BM at fixed support for a cantilever beam of span ' 1 ' Diagram $=3$ marks Ordinates marked $=2$ marks	$\begin{aligned} & \hline 5 \\ & \text { marks } \end{aligned}$
	b)	Max positive shear force $=160 \mathrm{kN}(2$ marks) Max negative shear force $=166.25 \mathrm{kN}(2$ marks $)$ Absolute max shear force $=166.25 \mathrm{kN}$ (1 mark) Absolute max BM when 80 kN at 8.35 m from A. (2 marks) Absolute max $\mathrm{BM}=651.52 \mathrm{kNm}$ (3 marks)	$\begin{aligned} & 10 \\ & \text { marks } \end{aligned}$
PART C			
Answer any two full questions. Each question carries 20 marks			
7	a)	Labelled sketch (2 marks) Functions of components (4 marks)	$\begin{aligned} & \hline 6 \\ & \text { marks } \end{aligned}$
	b)	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}=50 \mathrm{kN}, \mathrm{~V}_{\mathrm{B}}=40 \mathrm{kN}(1 \text { mark }) \\ & \mathrm{T}_{\mathrm{AB}}=316.49 \mathrm{kN}(3 \text { marks }) \\ & \mathrm{T}_{\mathrm{BC}}=312.67 \mathrm{kN}(3 \text { marks }) \\ & \mathrm{T}_{\mathrm{CD}}=313.16 \mathrm{kN}(3 \text { marks }) \\ & \mathrm{T}_{\mathrm{DE}}=315.07 \mathrm{kN}(3 \text { marks }) \\ & \text { Length }=201.11 \mathrm{~m}(1 \text { mark }) \end{aligned}$	$\begin{aligned} & \hline 14 \\ & \text { marks } \end{aligned}$
8	a)	With neat sketch, discuss the profile/shape of cable subjected to uniformly distributed load ' w ' per unit horizontal length.	5 marks
	b)	Vertical reaction at supports $=1200 \mathrm{kN}(1$ mark $)$ Horizontal reaction at supports $=3000 \mathrm{kN}(2$ marks $)$ Maximum tension in cable $=3231.1 \mathrm{kN}(2$ marks $)$ a) Saddle support Horizontal force on tower = zero $(2.5$ marks $)$ Vertical force on tower $=2931.9 \mathrm{kN}$ (2.5 marks) b) Pulley support Horizontal force on tower $=201.82(2.5$ marks $)$ Vertical force on tower $=2815.48 \mathrm{kN}(2.5$ marks $)$	$\begin{aligned} & 15 \\ & \text { marks } \end{aligned}$
9	a)	Three-hinged Arches (2marks) Two-hinged Arches (2marks) Fixed-hinged Arches (2marks)	$\begin{aligned} & 6 \\ & \text { marks } \end{aligned}$

b)	$\mathrm{V}_{\mathrm{A}}=325 \mathrm{kN}, \mathrm{V}_{\mathrm{B}}=175 \mathrm{kN}(2 \mathrm{marks})$ Horizontal thrust $=312.5 \mathrm{kN}(2$ marks $)$ Radius $=29 \mathrm{~m}(2$ marks $)$ Vertical shear at $\mathrm{D}=125 \mathrm{kN}(2$ marks $)$ Normal thrust at $\mathrm{D}=336.43 \mathrm{kN}(2$ marks $)$ Radial shear at $\mathrm{D}=9.57 \mathrm{kN}(2$ marks $)$ Bending Moment at $\mathrm{D}=1306.25 \mathrm{kN} \mathrm{(} \mathrm{2} \mathrm{marks)})$	marks

