

14	a)	Figure of one set (2 marks), Effect of change in rotor resistance (2 marks)	(4)
	b)	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{A}}=150<-28.98^{0} \mathrm{~A}, \operatorname{Cos} \Phi_{\mathrm{A}}=0.8748 \mathrm{lag},(1.5 \mathrm{marks}), \mathrm{I}_{\mathrm{T}}=328<-36.86^{0} \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B}}=180.6<-43.14^{0} \mathrm{~A}, \operatorname{Cos} \Phi_{\mathrm{B}}=0.7264 \text { lag }(1.5 \text { marks }) \\ & \mathrm{E}_{\mathrm{A}}=4776<15.49^{0} \mathrm{~V}, \mathrm{E}_{\mathrm{B}}=5560<16^{0} \mathrm{~V},(3 \text { marks }) \end{aligned}$	(6)
PART D			
Answer any two full questions, each carries 10 marks			
15	a)	Definition (2 marks), Causes \& elimination (3 marks)	(5)
	b)	Figure (2 marks), method of determination of input current, power factor and efficiency - (3 marks)	(5)
16	a)	Circle diagram (3 marks), FL current ~ 37 A \& power factor ~ 0.77 lag (1 mark), slip $\sim 7 \%$ (1 mark) and efficiency $\sim 77 \% ~(1$ mark)	(6)
	b)	Diagram (2 marks), explanation (2 marks)	(4)
17	a)	Principle of operation (3marks), Comparison (2 marks)	(5)
	b)	Two methods of speed control with figures (2.5 marks each)	(5)

**Question number 6 of Part A: Marks may be given if attempted since it is outside the scope of the syllabus.
Methodology of attempting analytical questions may be given weightage while evaluating answer paper.

