R3910

Scheme of Valuation/Answer Key

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: CH201

Course Name: CHEMICAL PROCESS CALCULATIONS

Max. Marks: 100

Duration: 3 Hours

	PART A	
	Answer any two full questions, each carries 15 marks.	Marks
1 a)	Convert Btu/(ft hr^0F) to Kcal/(m hr^0C)	
	1 Btu= 252 Cal, 1ft=0.3048 m Δ^0 F=1.8 Δ^0 C	(1)
	Substitute and find the value	(1)
b)	Basis- 100 gm of solution APLABDUL KALAM	(1)
	Molarity = no. of moles of KOH/ volume of solution in litres	(1)
	Weight of KOH - 30.2 gm	
	No. of moles of KOH= 30.2/MW of KOH= 30.2/56	
	Molarity= $(30.2/56)$ /volume of solution= 7.0	
	Volume of solution=0.5393/7.0= 0.077 litres	(1)
	Density= mass/volume= 100/0.077= 1298 g/litres= 1298 kg/m ³	(1)
c)	$API = \frac{141.5}{sp.gr228.8K} - 131.5$	(1)

Find sp.gravity by substitution

(1)

(1)

(d) Basis: 100 moles of the mixture at std conditions

Name	No. of moles	MW	Weight (gm)	Weight %
CH_4	30	16	80	38.46
C_2H_4	20	28	560	26.92
N_2	40	28	1120	53.84
O ₂	10	32	320	15.38
		Total	2080	100

(1)

(3)

ii) average MW = 2080/100 = 20.80

iii) density = Mass/ volume

$$= 20.80/22.4 = 0.9286 \text{ gm/lit}$$
(2)

2	a)	Unit operations- consists of physical operations eg:- evaporation, distillation etc	(1)			
		Unit processes- involves chemical reactions eg:- saponification, hydrolysis, etc	(1)			
	b)	Basis: 100 gm of solution	(1)			
		Alcohol – 50 gm, Water - 50 gm				
		No. of moles of alcohol= $50/46=1.087$ moles	(1)			
		Volume of solution= 100/0.914 =109.409 cc = 0.1094 litres	(1)			
		i) Molarity = $1.087/0.1094 = 9.936 \text{ mol/L}$				
		ii) Molality = $1.087*1000/(50) = 21.74$ mol/kg water				
		iii) Volume of water = $50/0.998 = 50.1$ cc	(1)			
	Volume of alcohol = $50/0.780 = 64.10$ cc					
		Volume % alcohol = 64.10/109.409= 58.6 %	(1)			
	c)	Basis : 100 moles of the mixture	(1)			
		Let x - no of moles of oxygen present, y - no. of moles of SO_2 present				
		x + y = 100 API ABDUL KALAM	(1)			
		32x + 64y = 4480	(1)			
		Solve for x and $y \rightarrow \text{composition in mole \%}$ ans	(1)			
	Convert to weight % ans		Convert to weight % ans	(2)		
		Partial pressure of oxygen = mole fraction of oxygen*total pressure				
		= (x/100)*200 kPa ans	(1)			
3	a)	Basis: 100 gm of solution	(1)			
		Weight of H_2SO_4 present = 2.45, no of equivalents = $2.45/49 = 0.05$	(1)			
		Density = 1.011 g/cc				
		Volume of solution = 100/1.011= 98.91 cc= 0.09891 litres	(1)			
		Normality = 0.05/0.09891= 0.5055 N	(1)			
	b)	$\frac{Btu}{hr.ft^2.o_F} tO \frac{cal}{\min(cm^2)0_C}$	(2)			
		1 Btu = 252 cal				
		I hr = 60 min				
		$I ft = 30.48 \ cm$				
		$I\Delta^0 F = 1.8 \Delta^0 C$				
		$\frac{lb}{hr.ft^2}$ to $\frac{g}{min(cm^2)}$	(2)			
		1 lb- 453.4 gm				
		Substitute and find the equation	(2)			

	c)	Compressibility factor (Z = PV/RT), Valid points of explanation deviation	(2)
		from ideality	
		construction of compressibility factor chart	(2)
		application	(1)
		PART B	
4	a)	Answer any two full questions, each carries 15 marks. State the Clasius-Clapeyron equation	(1)
	,	Derivation of Clasius-Clapeyron equation	(2)
		Assumptions (listing 3 assumptions)	(1)
	b)	Relative humidity= partial pressure/vapour pressure	(1)
		Partial pressure =0.8 *17.5=14 mm Hg	
		Percent humidity = Absolute humidity/ saturation humidity	
		Absolute humidity =14/(750-14)=0.01902	(1)
		Saturation humidity= 17.5/(750-17.5)=0.02389	(1)
		Percent humidity= 79.61 % API ABDUL KALAM	(1)
	c)	Basis : 100 moles/hr of feed	(1)
		D-moles of distillate, W-moles/hr of bottom Product	
		Write overall balance, $100 = D+W$	(1)
		Determine composition of feed, distillate and bottom product in mole percentage	(3)
		$X_{\rm f} = (40/78)/(40/78+60/92)$	
		$X_d = (97/78)/(97/78+3/92)$	
		$X_w = (5/78)/(5/78+95/92)$	
		Benzene balance - \rightarrow 100* $x_f = D*x_d + W*x_w$	(1)
		Solve for D and W	(1)
5	a)	$101 = x^* 156 + (1-x)^* 63$	(1)
		Solve for x - composition of benzene in liquid phase,	(1)
		(1-x) - Toluene composition	(1/2)
		y = x*156/101 - composition of benzene in vapour phase,	(1)
		(1-y) - toluene composition	(1/2)
	b)	Definition of WBT	(1)
		Adiabatic Saturation Temperature	(1)
		Dew point	(1)
	c)	Basis : 100 kg of 30 % Na ₂ SO ₄ solution fed	(1)
		W ₁ - weight of crystals formed	

		W ₂ - weight of mother liquor	
		Total balance, $100 = W_1 + W_2$	(1)
		Na ₂ SO ₄ balance, $100*0.3 = (W_1*142/342) + (W_2*0.1)$	(2)
		Solve for W_1 (ans)	(1)
	(d)	Bypass: Diagram + Explanation	(1.5)
		Recycle: Diagram + Explanation	(1.5)
6	a)	Use psychrometric chart, schematically represent and find	
		Absolute humidity $(Y') = 0.035 \text{ kg/kg dry air}$	(2)
		Molal humidity $Y = Y'*29/18 = 0.0564$ kmol/kmol dry air	(2)
		Percent saturation $PS = 30\%$	(1)
		Wet Bulb Temperature = 310.5 K	(1)
		Humid volume $V_{\rm H} = 0.98 \text{ m}^3/\text{kg}$	(1)
	b)	Basis: 100 kg/h solution fed	(1)
		NaCl present- 10 kg	(1)
		NaOH- 10kg TECHNOLOGICAL	
		Water- 80 kg	
		W ₁ - Crystals formed, kg	
		W ₂ -concentrated liquor, kg	
		W ₃ - water evaporated	
		$100 = W_1 + W_2 + W_3$	(1)
		NaOH balance, $10 = W_2 * 0.5$	(1)
		NaCl balance, $10 = W_1 + W_2 * 0.02$	(1)
		Determine W ₁ and W ₂	(1)
	c)	Key component definition	(1)
		Eg:, ash in coal, pulp in paper etc	(1)
		PART C	
		Answer any two full questions, each carries 20 marks.	
7	a)	Carbon burnt= $6/12 = 0.5$ moles	(1)
		$O_2 \text{ fed} = 18/32 = 0.5625 \text{ moles}$	(1)
		Limiting reactant – carbon	(1)
		Carbon reacted = $16.5*12/44 + 2.8*12/28 = 4.5+1.2 = 5.7$ gm	(2)
		Conversion=5.7/6 *100= 95%	(1)
	b)	Proximate analysis: valid points and Method of analysis	(2)

b) Proximate analysis: valid points and Method of analysis

	Ultimate analysis: valid points and Method of analysis	(2)		
c)	Basis: 1 mole of CO burned	(1)		
	Reactants			
	CO = 1 mole at 1000 K			
	$O_2 = 0.5*1.9 = 0.95$ moles at 800K	(1)		
	$N_2 = 0.95*79/21 = 3.574$ moles at 800 K	(1)		
	Products			
	CO ₂ - 1mole	(1)		
	O ₂ - 0.45 moles	(1)		
	N ₂ - 3.574 moles	(1)		
	$\Delta H = \Delta H_1 + \Delta H_{298}^0 + \Delta H_2$	(1)		
	$\Delta H_1 = heat of reactants$			
	= 1*29.38(298-1000) + 0.95*33.13(298-800) + 3.574*31.43(298-800)	(1)		
	$\Delta H_2 = heat of products$ APLABDUL KALAM			
	= 1*49.91(1250-298)+0.45*33.13(1250-298)+3.574*31.43*(1250-298)	(1)		
	$\Delta H^{0}_{298} = -282.99 \text{ kJ/mol}$			
	Find the value of ΔH heat evolved in the reaction	(1)		
8 a)	Basis: 100 moles of flue gas	(1)		
	CO_2 - 8.7 moles, CO- 1.0 mole, O_2 - 2.0 moles and N_2 -88.3 moles.			
	Taking carbon balance, Carbon present in the flue $gas = 8.7 + 1.0 = 9.7$ moles			
	CH ₄ present in fuel- 9.7 moles			
	Nitrogen balance -> N_2 present in fuel+ N_2 supplied= N_2 present in flue gas			
	Oxygen balance \rightarrow O ₂ present in flue gas = 8.7+0.5+2.0 = 11.2 moles	(1)		
	O_2 supplied= 11.2+ O_2 used for H_2O = 11.2+9.7 = 20.9 moles	(1)		
	N_2 supplied= 20.9*79/21=78.62 moles	(1)		
	N2 present in fuel=88.3-78.62= 9.68 moles	(1)		
	Composition of fuel			
	$CH_4 - 9.7 \text{ moles} = 50\%$ $N_2 - 9.68 \text{ moles} = 50\%$	(1)		
	O_2 required = 9.7*2 = 19.4 moles			
	O_2 supplied = 20.9 moles			
	% excess= (20.9-19.4)/19.4 = 7.73%	(1)		
b)	Heat of vaporization calculation	(3)		
	i) Clapeyron equation			

	ii) Watson equation	
	iii)Kistyakowsky equation give equations with description	
(c)	Basis: 1 mole of CO burned	(1)
	Reactants at 400 K	(1)
	CO = 1 mole	
	O2-0.5*3 = 1.5 moles	
	N2 = 1.5*79/21 = 5.64 moles	
	Products at 600 K	(2)
	CO2- 1mole	
	O2-1 mole	
	N2-5.64 moles	
	$\Delta H = \Delta H1 + \Delta H^0 298 + \Delta H2$	(1)
	Δ H1= heat of reactants=(1x29.10+1.5*29.70+5.64*29.10)(298-400)	(2)
	Δ H2=heat of products=(1*41.45+1*29.70+5.64*29.10)(600-298)	(2)
	$\Delta H^{0}298 = -282.99 \text{ kJ/mol}$	
	Find the value of ΔH heat evolved in the reaction	(1)
a)	Basis: 100 kg of fuel burned	(2)
	H- 5.0 kg, S- 4.0 kg, C-65 kg = $65/12 = 5.412$ moles, O-10 kg and inerts - 16 kg	
	CO_2 formed = 5.412*0.8 moles=4.33 moles	(1)
	CO formed $=5.412*0.15=0.8118$ moles	(1)
	SO_2 formed = 4/32 moles= 0.125 moles	(1)
	H_2O formed = 5/2= 2.5 moles	(1)
	Theoretical Oxygen required = $5.412+0.125+1.25-0.3125 = 6.4745$	
	Oxygen supplied= 1.2*6.4745=7.7694 moles	(1)
	Products	
	CO ₂ - 4.33 moles - 11.2%	
	CO- 0.8118 moles - 2.1%	(3)
	SO ₂ - 0.125 moles - 0.32%	
	H ₂ O- 2.5 moles - 6.47%	
	Oxygen- 7.7694-(4.33+0.8118/2+1.25+0.125) = 1.6585 moles - 4.29%	
	$N_2 = 7.7694*79/21 = 29.23$ moles - 75.6%	
	Total = 38.6553 moles	
1-)		(1)

b) Basis: 1 mole of CO burned

9

(1)

Reactants at 373 K	(1)
CO= 1 mole	
O2-0.5*2=1.0 moles	
$N_2 = 1.0 \times 79/21 = 3.76$ moles	
Products at T	(2)
CO ₂ - 1mole	
O ₂ -0.5 moles	
N ₂ -3.76 moles	
$\Delta H = \Delta H 1 + \Delta H^0 298 + \Delta H 2 - \dots - (1)$	(1)
Let T- be the theoretical flame temperature	(1)
Δ H1= heat of reactants=(1*29.23+1.0*34.83+3.76*33.03)(298-373)	(2)
Δ H2=heat of products=(1*53.59+0.5*34.83+3.76*33.03)(T-298)	
$\Delta H^0 298 = -282.99 \text{ kJ/mol}$	
$\Delta H = 0$ since the process is adiabatic DUL KALAM	
Solve for T = 1820 K	(2)

