Scheme of Valuation/Answer Key

(Scheme of evaluation (marks in brackets) and answers of problems/key)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018			
Course Code: EE201			
Course Name: CIRCUITS AND NETWORKS			
	M	arks: 100 Duration: 3	Hours
PART A			
		Answer all questions, each carries5 marks.	Marks
1		Statement-2marks Proof-3marks Power is maximum when $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{S}}$ *	
2		Oriented graph - 1mark Incidence Matrix - 2marks Tie set Matrix - 2 marks	
3		Differential Equation- 2 marks; Solution- 3 marks (Can be done in any method) $\begin{align*} & 1=4 \mathrm{i}(\mathrm{t})+1 \mathrm{di}(\mathrm{t}) / \mathrm{dt}+1 / 0.25 \int \mathrm{i}(\mathrm{t}) \mathrm{dt} \\ & \mathrm{I}(\mathrm{~s})=\frac{1}{s 2+4 s+4} \\ & \mathrm{i}(\mathrm{t})=t e^{-2 t} \end{align*}$	
4		$\begin{aligned} & V(s)=R I(s)=I(s) ; \quad-1 \text { marks } \\ & \therefore v(t)=L^{-1} I(s)=L^{-1} \frac{s+2}{s^{2}+2 s+2}=e^{-t}(\cos t+\sin t)-4 \text { marks } \end{aligned}$	
5		5 conditions - 5 marks	
6		Explanation of h parameter with equation -3 marks. Equivalent Circuit - 2marks	
7		Take the derivative and do continued fraction expansion - 5marks Polynomial is Hurwitz (Can be done in any method)	
8		(i)RC Impedance Function(Pole near the origin) - 2.5 marks (ii) RL Impedance Function(zero near the origin)- 2.5 marks	
PART B			
Answer any twofullquestions, each carries 10 marks.			
9		Determining Norton equivalent current - 4marks Equivalent Resistance 4 marks. Drawing the Norton equivalent circuit -2 marks $\mathrm{I}_{\mathrm{N}}=-4.6 \mathrm{~A} \quad \mathrm{R}_{\mathrm{N}}=1.43 \Omega$	(10)
10	a)	Calculation of currents considering individual sources - 4marks Determining the total current -2 marks	(6)

		$\begin{aligned} & \text { Current due to } 6 \mathrm{~V} \text { source }=0.75 \mathrm{~A} \\ & \text { Current due to } 1 \mathrm{~A} \text { source }=0.375 \mathrm{~A} \\ & \text { Total current }=0.75+0.375=1.125 \mathrm{~A} \end{aligned}$	
	b)	4 properties - 4marks	(4)
11	a)	Drawing oriented graph and selecting a tree- 2 marks Writing Tieset matrix and KVL equilibrium equations $-5 \operatorname{marks}(2+3)$ Determining the loop currents - 3marks $\begin{aligned} & \mathrm{I}_{\mathrm{L} 1}=0.55 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{L} 2}=-0.866 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{L} 3}=-0.916 \mathrm{~A} \end{aligned}$	(10)
PART C			
Answer any twofullquestions, each carries 10 marks.			
12	a)	Determine initial voltage across the capacitor - 2marks Differential equation in position 2- 3 marks Determine capacitor voltage (Any method) - 5marks $v_{c}(t)=-50+150 e^{-200 t}$	(10)
13	a)	Determine initial current through the inductor - 3marks $\mathrm{I}_{\mathrm{L}}\left(0^{-}\right)=2 \mathrm{~A}$ Writing the mesh equations- 3 marks Determine $\mathrm{i}(\mathrm{t})($ Can be any method) -4 marks $i(t)=2 e^{-90 t} A$	(10)
14	a)	Writing the mesh equations correctly -6 marks; 3 marks each. Assuming clockwise directions for the two mesh currents, Mesh 1: $(4+j 5) I_{1}-(4+j 2.5) I_{2}=10$ Mesh 2: $-(4+j 2.5) I_{1}+(14+j 10) I_{2}=0$ Solving for current through 10Ω (Any method) - 4marks $i=0.7619+0.476 j$	(10)
PART D			
Answer any twofullquestions, each carries 10 marks.			
15	a)	Condition for reciprocity - 2.5 marks Symmetry - 2.5 marks	(5)
	b)	Determine A and C-2.5marks B and D-2.5marks $A=6 / 5 \quad B=17 / 5 \quad C=1 / 5 \quad D=7 / 5$	(5)

16	a)	Drawing two port networks parallel - 1mark Determining overall admittance parameter - 4marks	(5)
	b)	Synthesise in Foster I form - 5marks	(5)
17	a)	Cauer II Form - 5marks	(10)

QUESTION PAPER PATTERN (End semester exam)

Part A: 8 questions.
One question from each module of Module I - IV; and two each from Module V \& VI.
Student has to answer all questions. $(8 \times 5)=40$
Part B: 3 questions uniformly covering modules I\&II
Student has to answer any 2 questions: $(2 \times 10)=20$
Part C: 3 questions uniformly covering modules III\&IV
Student has to answer any 2 questions: $(2 \times 10)=20$
Part D: 3 questions uniformly covering modules V\&VI
Student has to answer any 2 questions: $(2 \times 10)=20$
Note: Each question can have maximum of 4 sub questions, if needed.

