Scheme of Valuation/Answer Key						
(Scheme of evaluation (marks in brackets) and answers of problems/key)						
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018						
Course Code: EE201						
Course Name: CIRCUITS AND NETWORKS						
Max. Marks: 100 Duration: 3 Hours						
	PART A					
1		Statement 2mortes Droof 2mortes				
1		Statement – 2marks F1001 – 3marks				
		Power is maximum when $Z_L = Z_S^*$				
2		Oriented graph – 1mark Incidence Matrix – 2marks Tie set Matrix – 2 marks				
3		Differential Equation- 2 marks; Solution- 3 marks (Can be done in any method)				
		1 = 4i(t) + 1di(t)/dt + 1/0.25 i(t)dt				
		$I(s) = \frac{1}{1}$				
		$s^2 + 4s + 4$				
		$I(t) = te^{-2t}$ APTABOUL KALAM TECHNOLOGICAL				
4		V(s) = RI(s) = I(s); - 1 marks IVERSITY				
		$\therefore v(t) = L^{-1}I(s) = L^{-1}\frac{s+2}{s^2+2s+2} = e^{-t}(\cos t + \sin t) - 4 \text{ marks}$				
5		5 conditions – 5 marks				
6		Explanation of h parameter with equation – 3marks.				
		Equivalent Circuit – 2marks				
7		Take the derivative and do continued fraction expansion – 5marks				
		Polynomial is Hurwitz (Can be done in any method)				
8		(i)RC Impedance Function(Pole near the origin) – 2.5marks				
		(ii) RL Impedance Function(zero near the origin) -25 marks				
		DADT B				
Answer any twofullquestions, each carries10 marks.						
9		Determining Norton equivalent current – 4marks Equivalent Resistance –	(10)			
		4marks. Drawing the Norton equivalent circuit – 2marks				
		$I_{\rm N} = -4.6A$ $R_{\rm N} = 1.43O$				
10	<u>)</u>	Calculation of currents considering individual sources America	(6)			
10	<i>a)</i>	Determining the total surgest 2 works	(0)			
		Determining the total current – 2marks				

		Current due to $6V$ source = $0.75A$			
		Current due to 1A source = $0.375A$			
		Total current = $0.75 + 0.375 = 1.125$ A			
	b)	4 properties – 4marks	(4)		
11	a)	Drawing oriented graph and selecting a tree- 2 marks	(10)		
		Writing Tieset matrix and KVL equilibrium equations – 5marks(2+3)			
		Determining the loop currents – 3marks			
		$I_{L1} = 0.55 A$			
		$I_{L2} = -0.866A$			
		I _{L3} = -0.916A			
		PART C			
Answer any twofullquestions, each carries10 marks.					
12	a)	Determine initial voltage across the capacitor – 2marks	(10)		
		Differential equation in position 2- 3 marks			
		Determine capacitor voltage (Any method) – 5marks			
		$v_{c}(t) = -50 + 150 e^{-200t}$ UNIVERSITY			
13	a)	Determine initial current through the inductor – 3marks	(10)		
		$I_L(0^-) = 2A$			
		Writing the mesh equations- 3 marks			
		Determine i(t)(Can be any method) – 4 marks			
		$i(t) = 2 e^{-90t} A$			
14	a)	Writing the mesh equations correctly – 6 marks; 3 marks each.	(10)		
		Assuming clockwise directions for the two mesh currents,			
		Mesh 1:			
		$(4+j5)I_1 - (4+j2.5)I_2 = 10$			
		Mesh 2:			
		$-(4+j2.5)I_1 + (14+j10)I_2 = 0$			
		Solving for current through 10Ω (Any method) - 4marks			
		i = 0.7619 + 0.476 j			
PART D					
Answer any twofullquestions, each carries 10 marks.					
15	a) b)	Determine A and C 2 Smarks B and D 2 Smarks	(5)		
	0)	Determine A and $C = 2.5$ marks B and $D = 2.5$ marks	(5)		
		A = 0/5 $B = 11/5$ $C = 1/5$ $D = 1/5$			

QUESTION PAPER PATTERN (End semester exam)

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: (2 x 10) =20

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: (2 x 10) =20

Note: Each question can have maximum of 4 sub questions, if needed.