Scheme of Valuation/Answer Key

(Scheme of evaluation(marks in brackets) and answers of problems/key)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: EE205

Course Name: DC MACHINES AND TRANSFORMERS

Max. Marks:100			Duration: 3 Hours					
PART A								
	Ans	wer all questions, each carries	a 5 marks. Marks					
1	Lap: $V*I = 10kW, I = 10kW/250 = 40A$ (1)		(5)					
	Wave: $I_a = I/2 = 40/2 =$	Wave: $I_a = I/2 = 40/2 = 20 \text{ A}$ (2), $V = 500 \text{ V}$ (1), $P = 20*500 = 10 \text{kW}$ (1)						
2	Give 5 marks for comple answers.	Give 5 marks for complete derivation, partial marks may be given for incomplete answers.						
3	Since $E_b=0$, starting curred Variable resistor (2)	Since $E_b=0$, starting current is high. So to limit the starting current, starter is used (3) Variable resistor (2)						
4	Phasor diagram with I ₀ la	Phasor diagram with I_0 lagging by a large angle -(3). Name of components - (2)						
5	Regulation=No <u>load vol</u> no Regulation is negative regulation = <u>load voltage</u> no	tage – load voltage (1) load voltage when Load voltage is greater – no load voltage (3) load voltage	(5) than no load voltage or					
	Leading load/Capacitive	Leading load/Capacitive Load (1)						
6	$K = \frac{V_2}{V_1} = \frac{800}{1000} = 0.8 \text{ , V}$ $V_1 = \frac{V_2}{V_1} = \frac{V_2}{1000} = 0.8 \text{ , V}$ $V_1 = \frac{V_2}{V_1} = \frac{V_2}{1000} = 0.8 \text{ , V}$ Diagram (2) Showing input in right	$I_1 = 8*1000/1000 = 8A$, $I_2 = I_1/K =$	8/0.8=10A (5) 0A (1) Current 2A in the					
	common portion in right	direction (1)						
7	I hv= 500/(v3*11)=26.24	A (2.5), $I_{lv} = 500000/(\sqrt{3*400}) =$	(5) (5)					
8	Explaining vector group	(3). Yd1 Star Delta Phase shift (-3	30)° (2) (5)					
PART B								
Answer any two full questions, each carries 10 marks.								

9		$Y_F = \frac{Z}{P} - 1$, $Y_B = \frac{Z}{P} + 1$, Z=12*2=24 (2) $Y_F = 5$ (2), $Y_B = 7$ (2) pole pitch = Z/P =	(10)			
		24/4 = 6 (1). Draw 2 conductors, one solid and one dotted line in one slot and other 2				
		conductors, one solid and one dotted line in other slot with a pole pitch of 6 (2).				
		According to back and front pitches complete the interconnections (1).				
		Marks may be given to rough sketch also. Name the number of conductor.				
10		Drawing 2 poles (1) Drawing trapezoidal mmf and flux due to poles (2). Drawing				
		armature mmf and armature flux (2) Drawing of MNA and Load neutral (2) Drawing				
		resultant flux (3)				
11		Residual voltage = 10V (2) Since graph is linear for currents from 0.1 to 0.3 Critical				
		resistance can be calculated as $R_c = 150/0.3 = 500$ ohms (3). The point (1A, 300V) will lie				
		on OCC as well as critical resistance line. Hence max voltage buildup =300V (3) Now				
		critical speed = $1000*(300/500) = 600$ rpm (2).				
		If students attempted to answer from rough OCC,				
		OCC graph – (2) , residual voltage – (2), R_c – (2) V_{max} – (2) and N_c – (2)				
		Marks may be given to approximate answer.				
	APART C KALAM					
	1	Answer any two full questions, each carries 10 marks.	1			
12		$I_f = V/R_f = 250/250 = 1A$ (2), $I_{a1} = I_L - I_f = 10 - 1 = 9A$ (2)	(10)			
		$E_{b1}=V-I_{a1}R_a=250-(9*0.2)=248.2V$ (3),				
		Since load torque is constant, $I_{a2} = 9A$ (1),				
		$E_{b2} = V - (I_{a1} * (R_a + R_{add})) = 250 - 9 * (0.2 + 10) = 158.2V$ (1),				
		$E_{b1}\alpha N_1, E_{b2}\alpha N_2, \qquad N_2 = N_1^* (E_{b2}/E_{b1}) = 100^* (158.2/248.2) = 637.4 \text{ rpm} (1).$				
		Give some marks for circuit is drawn and equations are written.				
13	a)	No load input = $V*I_L=250*3=750W$, $I_{sh}=V/R_{sh}=250/250=1A$,	(5)			
		$I_{a0} = I_L - I_{sh} = 3 - 1 = 2A$ (1)				
		$I_{a0}^{2}R_{a}=22*0.2=0.8$, Constant loss= No load input- $I_{a0}^{2}R_{a}=750-0.8=749.2W$ (1)				
		$I_a = I_L + I_{sh} = 20 + 1 = 21 A$, $I_a^2 R_a = 212 \times 0.2 = 88.2 W$,				
		Total loss=Constant loss+ $I_a^2 R_a = 749.2 + 88.2 = 837.4 W$ (1)				
		Output= $V^*I_L = 20^*250 = 5000W$ (1),				
		Input=output+losses=5000+837.4=5837.4W				
		Efficiency= $5000/5837.4 = 85.65\%$ (1)				
	b)	The idea that current depends on kVA rating of the load not on kW. Alternatively				
	-,	it can be explained that low power factor loads draw more current. Give full credit				
	- /	it can be explained that low power factor loads draw more current. Give full credit	(5)			

14		Basic circuit with two windings $=$ (3)					
		Equations to get secondary parameters transferred from primary side					
		or vice versa - (3)					
		shunt branch - (2) complete equivalent circuit - (2)					
	PART D						
Answer any two full questions, each carries 10 marks.							
15		$xScos\varphi$					
		$Efficiency = \frac{1}{xScos\varphi + x^2W_c + W_i}$					
		$0.9 \times 10000 \times cos0.8$	(10)				
		$= \frac{1}{0.9 \times 10000 \times \cos 0.8 + 0.9^2 \times 120 + 80}$					
		=98%					
		Equation for efficiency - (4)					
		Substitution - (4)					
		Answer - (2)					
		If Wc and Wi are interchanged and calculated, 4 marks may be given to					
16	a)	Essential: Polarity and voltage ratio (3) Desirable: Same PU / percentage	(5)				
		impedance OR impedance inversely proportional to capacity, Same X/R ratio (2)					
	b)	Yes (2). Phase shift should be same (3). IVERSITY	(5)				
17		Connection discover with surrouts marked (5) Phases discover (2 works 15	(3)				
1/		Connection diagram with currents marked (5) Phasor diagram (3 marks – 1.5	(10)				
		marks for voltage phasors and 1.5 marks for current phasors). Derivation (2)					

	2014						