Scheme of Valuation/Answer Key (Scheme of evaluation(marks in brackets) and answers of problems/key)		
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018		
Course Code: EE205		
Course Name: DC MACHINES AND TRANSFORMERS		
Max. Marks:100	arks:100	Hours
PART A		
	Answer all questions, each carries 5 marks.	Marks
1	Lap: $\quad \mathrm{V}^{*} \mathrm{I}=10 \mathrm{~kW}, \mathrm{I}=10 \mathrm{~kW} / 250=40 \mathrm{~A} \quad$ (1) Wave: $\mathrm{I}_{\mathrm{a}}=\mathrm{I} / 2=40 / 2=20 \mathrm{~A}$ (2), $\mathrm{V}=500 \mathrm{~V}$ (1), $\mathrm{P}=20 * 500=10 \mathrm{~kW}$ (1)	(5)
2	Give 5 marks for complete derivation, partial marks may be given for incomplete answers.	(5)
3	Since $\mathrm{E}_{\mathrm{b}}=0$, starting current is high. So to limit the starting current, starter is used (3) Variable resistor (2)	(5)
4	Phasor diagram with I_{0} lagging by a large angle - (3). Name of components - (2)	(5)
5	Regulation=No $\frac{\text { load voltage }- \text { load voltage (1) }}{\text { no load voltage }}$ (1)Regulation is negative when Load voltage is greater than no load voltage regulation $=\frac{\text { load voltage }- \text { no load voltage }}{\text { no load voltage }}$ Leading load/Capacitive Load (1)	(5)
6	$K=\frac{V_{2}}{V_{1}}=\frac{800}{1000}=0.8, \mathrm{~V}_{1} \mathrm{I}_{1}=8 * 1000 / 1000=8 \mathrm{~A} \quad, \mathrm{I}_{2}=\mathrm{I}_{1} / \mathrm{K}=8 / 0.8=10 \mathrm{~A}$ Diagram (2) Showing input current 8 A (1) output current10A (1) Current 2A in the common portion in right direction (1)	(5)
7	$\mathrm{I}_{\mathrm{hv}}=500 /(\mathrm{V} 3 * 11)=26.24 \mathrm{~A} \quad(2.5), \mathrm{I}_{\mathrm{lv}}=500000 /(\mathrm{V} 3 * 400)=721.71 \mathrm{~A}$ (2.5)	(5)
8	Explaining vector group (3). Yd1 Star Delta Phase shift (-30) ${ }^{\circ}$ (2)	(5)
PART B		
Answer any two full questions, each carries 10 marks.		

9		$Y_{F}=\frac{Z}{P}-1, \quad Y_{B}=\frac{Z}{P}+1, \mathrm{Z}=12 * 2=24$ (2) $\quad \mathrm{Y}_{\mathrm{F}}=5$ (2), $\quad \mathrm{Y}_{\mathrm{B}}=7$ (2) pole pitch $=\mathrm{Z} / \mathrm{P}=$ $24 / 4=6$ (1). Draw 2 conductors, one solid and one dotted line in one slot and other 2 conductors, one solid and one dotted line in other slot with a pole pitch of 6 (2). According to back and front pitches complete the interconnections (1). Marks may be given to rough sketch also. Name the number of conductor.	(10)
10		Drawing 2 poles (1) Drawing trapezoidal mmf and flux due to poles (2). Drawing armature mmf and armature flux (2) Drawing of MNA and Load neutral (2) Drawing resultant flux (3)	(10)
11		Residual voltage $=10 \mathrm{~V}$ (2) Since graph is linear for currents from 0.1 to 0.3 Critical resistance can be calculated as $\mathrm{R}_{\mathrm{c}}=150 / 0.3=500$ ohms (3). The point ($1 \mathrm{~A}, 300 \mathrm{~V}$) will lie on OCC as well as critical resistance line. Hence max voltage buildup $=300 \mathrm{~V}$ (3) Now critical speed $=1000 *(300 / 500)=600 \mathrm{rpm}(2)$. If students attempted to answer from rough OCC, OCC graph - (2), residual voltage - (2), R_{c} - (2) $\mathrm{V}_{\max }$ - (2) and N_{c} - (2) Marks may be given to approximate answer.	(10)
PART C			
Answer any two full questions, each carries 10 marks.			
12		$\mathrm{I}_{\mathrm{f}}=\mathrm{V} / \mathrm{R}_{\mathrm{f}}=250 / 250=1 \mathrm{~A}(2)$, $\mathrm{I}_{\mathrm{a} 1}=\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{f}}=10-1=9 \mathrm{~A} \quad$ (2) $\mathrm{E}_{\mathrm{b} 1}=\mathrm{V}-\mathrm{I}_{\mathrm{a} 1} \mathrm{R}_{\mathrm{a}}=250-(9 * 0.2)=248.2 \mathrm{~V}$ (3), Since load torque is constant, $\mathrm{I}_{\mathrm{a} 2}=9 \mathrm{~A} \quad$ (1), $\begin{aligned} & \mathrm{E}_{\mathrm{b} 2}=\mathrm{V}-\left(\mathrm{I}_{\mathrm{a} 1} *\left(\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{add}}\right)\right)=250-9 *(0.2+10)=158.2 \mathrm{~V} \\ & \mathrm{E}_{\mathrm{b} 1} \alpha \mathrm{~N}_{1}, \mathrm{E}_{\mathrm{b} 2} \alpha \mathrm{~N}_{2}, \quad \mathrm{~N}_{2}=\mathrm{N}_{1} *\left(\mathrm{E}_{\mathrm{b} 2} / \mathrm{E}_{\mathrm{b} 1}\right)=100 *(158.2 / 248.2)=637.4 \mathrm{rpm} \end{aligned}$ Give some marks for circuit is drawn and equations are written.	(10)
13	a)	$\begin{align*} & \text { No load input }=\mathrm{V} * \mathrm{I}_{\mathrm{L}}=250 * 3=750 \mathrm{~W}, \quad, \quad \mathrm{I}_{\text {sh }}=\mathrm{V} / \mathrm{R}_{\mathrm{sh}}=250 / 250=1 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{a} 0}=\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\text {sh }}=3-1=2 \mathrm{~A} \\ & I_{a 0}{ }^{2} \mathrm{R}_{\mathrm{a}}=22 * 0.2=0.8, \text { Constant loss }=\text { No load input- } I_{a 0}{ }^{2} \mathrm{R}_{\mathrm{a}}=750-0.8=749.2 \mathrm{~W} \tag{1}\\ & \mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\text {sh }}=20+1=21 \mathrm{~A}, I_{a}{ }^{2} \mathrm{R}_{\mathrm{a}}=212 * 0.2=88.2 \mathrm{~W}, \\ & \text { Total loss }=\text { Constant loss }+I_{a}{ }^{2} \mathrm{R}_{\mathrm{a}}=749.2+88.2=837.4 \mathrm{~W} \quad \text { (1) } \tag{1}\\ & \text { Output }=\mathrm{V} * \mathrm{I}_{\mathrm{L}}=20 * 250=5000 \mathrm{~W} \quad \text { (1), } \\ & \text { Input }=\text { output }+ \text { losses }=5000+837.4=5837.4 \mathrm{~W} \\ & \text { Efficiency }=5000 / 5837.4=85.65 \% \quad \text { (1) } \tag{1} \end{align*}$	(5)
	b)	The idea that current depends on kVA rating of the load not on kW . Alternatively it can be explained that low power factor loads draw more current. Give full credit for proper explanation.	(5)

