Reg No.:

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: EE205

Course Name: DC MACHINES AND TRANSFORMERS

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all questions, each carries 5 marks. Marks

1	The armature of a 250 V, 10kW, 4 pole lap connected generator was	
	reconnected in wave. Find the new voltage, current and power ratings.	(5)
2	Derive the E M F equation of a DC generator.	(5)
3	Why a starter is required to start a DC motor? What is the essential element of a	
	starter?	(5)
4	Draw the phasor diagram of a transformer on no load. Show the two	
	components of the no load current and write their names.	(5)
5	What is meant by negative voltage regulation? For what type of load you may	
	get negative voltage regulation?	(5)
6	A 1000/800V, 8kVA autotransformer supplies rated current to a load on low	
	voltage side. Draw a schematic diagram and mark input current, output current	
	and current in the section of the winding common to high voltage and low	
	voltage sides.	(5)
7	Find the rated line currents on high voltage and low voltage sides of a 500kVA	
	11kV/400V delta-star transformer.	(5)
8	What is meant by vector group? What is Yd1 vector group?	(5)
	PART B	
	Answer any two full questions, each carries 10 marks.	
9	Draw the developed view of a double layer lap winding of a 4 pole 12 slot	
	armature. Commutator and brushes need not be drawn.	(10)
10	Draw the developed view of mmf and flux distribution of a loaded 2 pole	
	machine.	(10)

11 The table shows OCC of a dc shunt generator at a speed 1000 rpm. What is the residual voltage? Find the critical resistance. Also find the maximum voltage build up at 1000 rpm and critical speed for a field resistance of 300 Ω . (You can find the answers by carefully observing the table. If necessary you may draw a rough sketch. Graph sheet is not required)

	-		-			-						_
$I_{\rm f}$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
Е	10	50	100	150	190	220	245	260	275	285	300	(1

PART C

Answer any two full questions, each carries 10 marks.

12 A 250 V shunt motor has resistances 0.2 Ω and 250 Ω . The motor is driving a (10)

D

(5)

(10)

constant load torque and running at 1000 rpm drawing 10 A current from the supply. Calculate the new speed and armature current if an external armature resistance of value 10 Ω is inserted in the armature circuit. Also find the stalling current. Neglect armature reaction and saturation.

- 13 a) During Swinburne's test a 250V DC machine was drawing 3A from the 250V supply. The resistances are 250 Ω and 0.2 Ω . Find the constant loss of the machine. Also find the efficiency of the machine when it is delivering a 20A at 250V.
 - b) Why transformers are rated in kVA not in KW? (5)
- 14 Develop the equivalent circuit of a transformer.

PART D

Answer any two full questions, each carries 10 marks.

15 Two standard tests were conducted on a 10kVA, 1000/200V transformer. Current in one test was 2A. Voltage in one test was 15V. Power factors were 0.8 and 0.2. Find the efficiency at 90% full load and 0.8 power factor. (10)a) What are the necessary and desirable conditions for successful parallel 16 operation of two single phase transformers? (5) b) Can a Yd transformer be operated in parallel with a Dy transformer? What additional condition is to be satisfied over and above the conditions listed in question 16 a). (5) 17 In Scott connection prove that the 3-phase currents will be balanced if the 2phase currents are balanced. Assume upf load. (10)
