R3940

Course Name: ELECTRONIC CIRCUITS (EC, AE)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Max. Marks: 100

PART A

Marks Answer any two full questions, each carries 15 marks.

Name:

- a) Define stability factor for leakage current and derive its general expression. Derive (8) 1 the expression for stability factor for leakage current of emitter stabilized biasing circuit.
 - b) Draw the small signal low frequency hybrid π model for common emitter (7)configuration. Derive the expression for voltage gain, input and output impedance.
- 2 a) Derive the condition that must be satisfied by a RC circuit to behave as a (5) integrator. Design an integrator circuit to integrate a square wave of 2KHz frequency.
 - b) Sketch the response of a RC high pass circuit to a pulse input if RC>> tp and (3) RC<< tp.
 - c) Determine the bias voltage V_{CE} , current I_C and stability factor S_{ICO} for the voltage (7)divider configuration with $V_{CC}=20V$, $V_{BE}=0.7V$, $R_1=30K$, $R_2=4K$, $R_C=3K$, $R_E=0.5K$ and $\beta=120$.
- 3 a) Calculate the small signal voltage gain, input impedance and output impedance of (8) emitter follower having R_1 =50K, R_2 =10K, R_E =2K, R_S =0.5K, V_{CC} =15V, $V_{BE}=0.7V$, $V_A=80V$ and $\beta=50$
 - b) Using hybrid π model, obtain the expression for input impedance, output (7)impedance and mid band voltage gain of a common emitter amplifier.

PART B Answer any two full questions, each carries 15 marks.

- 4 a) With neat diagram explain cascode amplifier and its main characteristics. (7)
 - b) Explain shunt shunt feedback topology with neat diagram. Derive the expression (8) for net input and output impedance.
- With the small signal high frequency hybrid π model of a common emitter 5 a) (8) amplifier without bypass capacitor and derive the expression for upper cut off

Duration: 3 Hours

Reg No.:

frequency.

- b) With neat diagram derive the expression for frequency of oscillation of RC phase (7) shift oscillator.
- 6 a) Derive the expression for upper cut off frequency of a common base amplifier (8) using high frequency hybrid π equivalent model.
 - b) Draw the circuit of Colpitts oscillator and outline its working principle. (7)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) With neat diagram explain the working of astable multivibrator. Derive the (10) expression for time period of the astable multivibrator.
 - b) With neat diagram explain how voltage regulation is achieved in series voltage (10) regulator.
- 8 a) Explain class A power amplifier. Show that the maximum conversion efficiency (10) of the transformer coupled class A power amplifier is 50%.
 - b) Determine drain to source voltage of a MOSFET common source circuit using (7) voltage divider bias and source is directly grounded. Given that $V_{DD}=10V$, $R_1=10M\Omega$, $R_2=10M\Omega$, $R_D=2K\Omega$, Vt=2V, and $I_D=2$ mA. State which region, the MOSFET is working in the circuit with supportive computations.
 - c) Determine g_m for enhancement type MOSFET if $V_{GS(th)}=3V$ and it is biased at (3) $V_{GSO}=8V$. Assume k=0.3x10⁻³ mA/V².
- 9 a) With neat diagram explain Schmitt trigger. (7)
 - b) What is meant by cross over distortion. How it is eliminated. (3)
 - c) Derive expression for voltage gain, input impedance and output impedance of (10)
 Enhancement MOSFET drain feedback configuration.
