E	R3958	Pages: 2

Reg No.:	Name [.]	
NUS INO	Name	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: EC207

Course Name: LOGIC CIRCUIT DESIGN (EC, AE)

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

(8)

(8)

1 a) Convert the following

(i)

- (iii) (543.26)₁₀ into Octal
- (ii) (247.36)₈ into Hexa Decimal

(AB6)₁₆ to Decimal

(iv) $(AF9.B0D)_{16}$ into

Binary

- b) Consider the signed binary numbers A = 01000110 and B = 11010011 where B is in 2's complement form. Find the value of the following mathematical expression
 - (i) A + B
 - (ii) A B
 - (iii) B-A
- 2 a) Hamming code was used to generate parity for a nibble. If received bit sequence (8) is 0101010 then write correct bit sequence with (i) Even parity (ii) Odd parity
 - b) Explain the operation of a 8x1 multiplexer and implement the following using an 8x1 multiplexer (7)

$$F(A, B, C, D) = \sum m (0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14)$$

3 a) Minimize the following logic function using K- maps and realize using NAND (10) gates alone

$$F(A, B, C, D) = \sum m(0, 3, 5, 8, 9, 11, 15) + d(2, 3)$$

b) Design a magnitude comparator to compare two 2-bit numbers $A = A_1A_0$ and $B = B_1B_0$ (5)

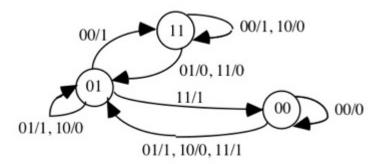
PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Draw the circuit and explain the operation of TTL NAND gate (10)
 - b) Compare TTL, CMOS logic families in terms of fan-in, fan-out, supply voltage, (5) propagation delay, power dissipation and noise margin
- 5 a) Implement the following function using PLA

$$F1(x, y, z) = \sum m(1, 2, 4, 6)$$

$$F2(x, y, z) = \sum_{x} m (0, 1, 6, 7)$$


E	R3958	Pages: 2
L	R3958	Pages

- b) Explain a MOD 6 asynchronous counter using J K Flip Flop (7)
- 6 a) Design a 3-bit synchronous counter using D Flip Flop (10)
 - b) Convert SR Flip Flop into J K Flip Flop (5)

PART C

Answer any two full questions, each carries20 marks.

- 7 a) Draw the logic diagram of 3 bit PIPO shift register with LOAD/SHIFT control (10) and explain its working.
 - b) Explain Moore and Mealy machine models. Compare the models (10)
- 8 a) Draw the logic diagram of 3 –bit Johnson counter and explain the working with truth table. (10)
 - b) For the given state diagram, design a sequential circuit with D flip flops (10)

- (i) Construct the state table.
- (ii) Obtain the simplified input equations for all input flip flops and the simplified equation for the output.

(10)

9 a) Minimize the state table using implication chart.

Present	Next state		Output	(Z_1Z_2)
state	X=0	X=1	X=0	X=1
0	0	1	00	00
1	4	2	00	00
2	7	1	00	00
3	2	6	01	10
4	6	5	10	00
5	3	4	01	11
6	1	6	01	10
7	3	8	10	00
8	8	7	01	11

b) Design a 101 sequence detector, for overlapping case, using D Flip Flop (10)
