Scheme of Valuation/Answer Key (Scheme of evaluation (marks in brackets) and answers of problems/key)				
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018				
Course Code: CE201				
Course Name: MECHANICS OF SOLIDS				
Max. Marks: 100		arks: 100	Duration: 3 Hours	
PART A				
		Answer any two full questions, each corn		Marks
1	a)	(i) $\mathrm{N}=\tau / \varphi$ (1 Mark) (ii) Proof resilience $=\sigma^{2} / 2 \mathrm{E}$ limit (1 Mark) (iii) Ultimate(yield load)/working 1 formula)	ess at elastic finition with	(3)
	b)	$\begin{aligned} & \delta l=\frac{\sigma}{E} \times l \Rightarrow \sigma=\frac{2.1 \times 2 \times 10^{5}}{3000}=140 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{WD}=\mathrm{SE} \\ & W(h+\delta l)=\frac{\sigma^{2}}{2 E} \times A \times l \quad \quad(3 \text { Marks }) \text { KALA } \\ & \Rightarrow W=17458 \mathrm{~N} \quad(1 \text { Mark }) \end{aligned}$		(8)
	c)	Concept of Bulk modulus - (1 Marks) Derivation (2 Marks). Formula: $E=3 K(1-2 v)$		(4)
2	a)	Formula with explanation of the terms (i) $\delta l=\frac{4 P l}{\pi E d_{1} d_{2}}$ (ii) $\delta l=\frac{P l}{E t(b-a)} \ln \left(\frac{b}{a}\right)$		(4)
	b)	(i) Stress $=156 \mathrm{~N} / \mathrm{mm}^{2}(2$ marks $)$ Pull $=110.27$ (ii) Stress $=108 \mathrm{~N} / \mathrm{mm}^{2}(3$ marks $)$ Pull $=76.34 \mathrm{kN}$		(7)
	c)	$\sigma_{\max }=150=\frac{P}{\left(\frac{\pi}{4} 15^{2}\right)} \Rightarrow P=26.507 \times 10^{3} \mathrm{~N}$ Stress in 20 mm dia portion $=84.375 \mathrm{~N} / \mathrm{mm}^{2}$ Strain energy formula Strain energy in 20 mm dia portion $=2795.7 \mathrm{Nmm}$ Strain energy in 15 mm dia portion $=2485 \mathrm{Nmm}$ Total SE $=5280.7 \mathrm{Nmm}$		(4)

3	a)	$\delta l=\frac{P l}{A E}=1.213 \mathrm{~mm}$ (2 Marks) Poisson's ratio $(v)=\frac{(0.00775 / 40)}{(1.213 / 2000)}=0.32$ (2 Marks) $E=2 N(1+v) \Rightarrow N=39.77 \mathrm{GPa}$ (2 Marks)	(6)
	b)	Compatibility equation: $\frac{\sigma_{s}}{E_{s}}=\frac{\sigma_{b}}{E_{b}} \Rightarrow \sigma_{s}=1.818 \sigma_{b}$ (3 Marks) Equilibrium equation: $\sigma_{s} A_{s}+\sigma_{b} A_{b}=P \quad \Rightarrow \sigma_{s}+1.133 \sigma_{b}=190.986$ (3 Marks) Solving, $\sigma_{s}=117.66 \mathrm{~N} / \mathrm{mm}^{2} \& \sigma_{b}=64.72 \mathrm{~N} / \mathrm{mm}^{2}$ (1 Mark) $\begin{align*} & P_{\mathrm{s}}=554.4 \mathrm{kN} \quad \& \quad P_{\mathrm{b}}=345.6 \mathrm{kN} \tag{1Mark}\\ & \delta l=0.088 \mathrm{~mm} \tag{1Mark} \end{align*}$	(9)
		PART B	
		Answer any two full questions, each carries 15 marks.	
4	a)		(5)
	b)	Reactions $\mathrm{R}_{\mathrm{A}}=7.33 \mathrm{kN} ; \mathrm{R}_{\mathrm{B}}=8.67 \mathrm{kN}$ (2 Marks)	(10)

5	a)	Explanation + figure (3 Marks); Section modulus (2 Marks)	(5)
	b)	Reactions: $\mathrm{R}_{\mathrm{A}}=110 \mathrm{kN} ; \mathrm{R}_{\mathrm{C}}=190 \mathrm{kN}$ (3 Marks) Note:- Since overhanging beam is not explicitly specified in the syllabus, full mark may be given, if 75% of SF \& BM values are correct.	(10)
6	a)	Explanation (3 Marks) \& Sketch (2 Marks)	(5)
	b)	$\begin{align*} & \text { Calculation of max. } \mathrm{BM}=1.5 \mathrm{~W} \mathrm{kNm} \text {, } \\ & I=\frac{100 \times 100^{3}}{36} \tag{3Marks}\\ & \text { (3 Marks) } \\ & \text { Correct equation: } \frac{M}{I}=\frac{\sigma}{y} \\ & \text { (3 Marks) } \\ & \end{align*}$ Allowable load (W) from both considerations: 2.778 kN and 4.167 kN Safe load $=2.778 \mathrm{kN}$ \& Extreme fibre stresses $\sigma_{\mathrm{C}}=100 \mathrm{MPa} ; \sigma_{\mathrm{T}}=50 \mathrm{MPa}$ (1 Marks) Note:- Unsymmetrical section is not included the syllabus. Hence 90% mark is allotted for the basic steps.	(10)
PART C			
Answer any two full questions, each carries20 marks.			
7	a)	Sketch showing the stresses in the element (1 Marks) Free body diagram \& derivation (3 Marks) $\sigma_{n}=\sigma_{x} \cos ^{2} \theta+\sigma_{y} \sin ^{2} \theta$ (2 Marks) (Formula only - 2 mark)	(6)
	b)	Derivation of Circumferential stress, $\sigma_{c}=\frac{p d}{2 t} \quad$ (3 Marks)	(6)

		Derivation of Longitudinal stress, $\sigma_{l}=\frac{p d}{4 t}$ (3 Marks) (Formulae only $-1 \frac{1}{2} \times 2=3$ marks)	
	c)	Shear stress consideration: $\begin{aligned} & \frac{T}{J}=\frac{\tau_{s}}{R} \Rightarrow T=752.2 \mathrm{Nm} \quad \text { Equation - (1 Mark); Value of } T-(2 \text { Mark }) \\ & \left(J=220644.95 \mathrm{~mm}^{4} ; R=22 \mathrm{~mm}\right) \end{aligned}$ Angle of twist consideration:	(8)
8	a)	 Mohr's circle Major principal stress $=\mathrm{OP}=57 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{~T})$ Minor principal stress $=\mathrm{OQ}=37 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{C})$ Max. Shear stress $=E F=47 \mathrm{~N} / \mathrm{mm}^{2}$ Principal planes $16^{\circ}, 106^{\circ}$ or $16^{\circ},-74^{\circ}$ (5 Marks) (1.5 Mark) (1.5 Mark) (1 Mark) (1 Mark) (40% credit may be given, if the student finds correct answer using analytical method. Principal stresses - 2 marks, Max. Shear stress - 1 mark, Principal Planes - 1 mark)	(10)
	b)	Essential points: Double integration method: Successive integration of EI $\frac{d^{2} y}{d x^{2}}=M(x)$ gives equation for slope \& deflection. Macaulay's method: It is a double integration method in which $M(x)$ is the general BM expression. The appropriate terms are considered for a given	(4)

		segment. Moment Area method: Graphical method based on Mohr's theorems which use $\frac{M}{E I}$ diagram to compute slope $\&$ deflection $(3 \times 1=3 \text { Marks })$ Additional points (1 Mark)	
	c)	Buckling load $P_{c r}=\frac{4 \pi^{2} E I}{l^{2}}$ OR $P_{c r}=\frac{\pi^{2} E I}{L^{2}}$ where L is the eff. length $=0.5 l$. Formula (3 Marks) $\begin{aligned} & P_{\mathrm{cr}}=133870 \mathrm{kN} \\ & \left(I=2.5836 \times 10^{8} \mathrm{~mm}^{4}\right) \end{aligned}$ Safe load $=38249 \mathrm{kN} \quad$ (1 Mark)	(6)
9	a)	$\begin{aligned} & \text { Slenderness ratio }=\text { Effective length/Minimum radius of gyration (2 Marks) } \\ & \text { Kern of circular section }- \text { circular portion with diameter }=d / 4 \\ & \text { Explanation with sketch } \quad(3 \text { Marks) } \end{aligned}$	(5)
	b)	Circumferential/hoop stress, Radial stress \& Longitudinal stress \quad (2 Marks) Circumferential stress, $\sigma_{c}=\frac{B}{x^{2}}+A$; Radial stress, $p_{x}=\frac{B}{x^{2}}-A$ Correct equations with detailing of the terms $(2+1=3 \text { Marks })$	(5)
	c)	$\begin{align*} & \text { Reactions } R_{\text {left }}=4.5 \mathrm{kN} ; R_{\mathrm{right}}=1.5 \mathrm{kN} \tag{1Mark}\\ & \qquad \left.E I \frac{d^{2} y}{d x^{2}}=1.5 x \right\rvert\,-2 \frac{(x-3)^{2}}{2} \end{align*}$ (2 Marks) Slope Equation: $\left.\quad E I \frac{d y}{d x}=1.5 \frac{x^{2}}{2}-7.875 \right\rvert\,-\frac{(x-3)^{3}}{3}$ Deflection Equation: EI $\left.y=1.5 \frac{x^{3}}{6}-7.875 x \right\rvert\,-\frac{(x-3)^{4}}{12}$ (2 Marks) Slope at left $=\frac{10.125}{E I}=0.00197 \mathrm{rad}$. Slope at right $=\frac{7.875}{E I}=0.00253 \mathrm{rad}$. (2 Mark) Max. Deflection $=\frac{17.01}{E I}=4.25 \mathrm{~mm}$ at $x=3.24 \mathrm{~m}$ from right. (1 Mark) Note:- Full mark should be given if the student gets correct answers using any other method.	(10)
75% credit may be given for correct procedure, even if answer is wrong, for any intermediate results.			

