\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: ME205
 Course Name: THERMODYNAMICS
 Steam Tables allowed

Max. Marks: 100
Duration: 3 Hours

PART A
 Answer any three full questions, each carries 10 marks.

1 a) Define a thermodynamic systems
b) Distinguish between intensive and extensive properties. Give examples
c) Explain thermodynamic equilibrium.

Marks

2 a) How does resistance thermometer measure temperature?
b) Show that heat is path function and not a property
c) Define enthalpy. Why enthalpy of an ideal gas depends only on temperature?

3 a) Which property of a system increases when heat is transferred: (a) at constant volume (b) at constant pressure
b) A mass of 8 kg gas expands within a flexible container so that the p -v relationship is of the form $\mathrm{pv}^{1.2}=$ constant. The initial pressure is 1000 kPa and the initial volume is $1 \mathrm{~m}^{3}$. The final pressure is 5 kPa . If specific internal energy of the gas decreases by $40 \mathrm{~kJ} / \mathrm{kg}$, find the heat transfer in magnitude and direction.
4 a) Derive the steady flow energy equation for a bottle filling process using system approach.
b) In a gas turbine the gas enters at the rate of $5 \mathrm{~kg} / \mathrm{s}$ with a velocity of $50 \mathrm{~m} / \mathrm{s}$ and enthalpy of $900 \mathrm{~kJ} / \mathrm{kg}$ and leaves the turbine with a velocity of $150 \mathrm{~m} / \mathrm{s}$ and enthalpy of $400 \mathrm{~kJ} / \mathrm{kg}$. The loss of heat from the gases to the surroundings is $25 \mathrm{~kJ} / \mathrm{kg}$. Assume for gas $\mathrm{R}=0.285 \mathrm{~kJ} / \mathrm{kgK}$ and $\mathrm{c}_{\mathrm{p}}=1.004 \mathrm{~kJ} / \mathrm{kgK}$ and the inlet conditions to be at 100 kPa and $27^{\circ} \mathrm{C}$. Determine the power output of the turbine and the diameter of the inlet pipe.

PART B
 Answer any three full questions, each carries 10 marks.

5 a) Explain the two statements of Second law of thermodynamics. Why PMM2 is impossible
b) A heat engine operating between two reservoirs at temperatures $600^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ drives refrigerator operating between reservoirs at temperatures of $40^{\circ} \mathrm{C}$ and $-15^{\circ} \mathrm{C}$. The heat transfer to the heat engine is 2500 kJ and the net work output of the combined engine and refrigerator plant is 400 kJ . The efficiency of the heat engine and COP of the refrigerator are each 40% of the maximum possible values. Estimate the heat transfer to the refrigerant and net heat transfer to the reservoir at $40^{\circ} \mathrm{C}$.

6 a) State and prove Clausius theorem
b) Determine the maximum work obtainable by using one finite body at temperature

T and a thermal energy reservoir at temperature $\mathrm{T}_{0}, \mathrm{~T}>\mathrm{T}_{0}$
a) Why second law is called law of degradation?
b) Derive the expression for reversible work done by a closed system if it interacts only with the surroundings
a) Draw the phase equilibrium diagram for a pure substance on h-s plot with relevant constant property lines
b) Steam flows in a pipeline at 1.5 MPa . After expanding to 0.1 MPa in a throttling calorimeter, the temperature is found to be $120^{\circ} \mathrm{C}$. Find the quality of steam in the pipeline. What is the maximum moisture at 1.5 MPa that can be determined with this set-up if at least $5^{\circ} \mathrm{C}$ of superheat is required after throttling for accurate reading?

PART C
 Answer any four full questions, each carries 10 marks.

9 a) Discuss compressibility factor and law of corresponding states.
b) A fluid having a temperature of $150^{\circ} \mathrm{C}$ and a specific volume of $0.96 \mathrm{~m}^{3} / \mathrm{kg}$ at its initial state expands at constant pressure, without friction, until the volume is $1.55 \mathrm{~m}^{3} / \mathrm{kg}$. Find, for 1 kg of fluid, the work, the heat transferred and the final temperature if (a) the fluid is air and (b) the fluid is steam.
10 Express the changes in the internal energy and enthalpy of an ideal gas in a reversible adiabatic process in terms of pressure ratio
11 a) State and explain Amagat's law of partial volumes of a gas mixture
12 a) Derive Maxwell's equations
13 a) Discuss the Joule-Thomson effect with a T-P plot. Prove that Joule Thomson coefficient is zero for ideal gas.
14 a) Explain degree of reaction. What are its limiting values?
b) Define equivalence ratio. What is its significance in combustion process?

