R1907

Final Scheme/ Answer Key for Valuation Scheme of evaluation (marks in brackets) and answers of problems/key

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: BE101-03

Course Name: INTRODUCTION TO ELECTRICAL ENGINEERING

Max. Ma	arks: 100 PART A	on: 3 Hours
	Answer all questions, each carries 4 marks	Marks
1	Definition of self-inductance-2 marks	
	Derivation-2 marks	
	$L_{A} = \frac{N\emptyset}{I} \text{ Henry}$ $L_{A} = \frac{N^{2}}{2} \text{ Henry}$	(4)
2	KCL-2 marks	
	KVL-2marks	(4)
3	Magnetic circuit 1+1	
5	Flectrical equivalent $= 1 + 1$	(4)
4	$B = \frac{\phi}{A} = 0.2T$	(4)
5	Calculation of f-2 Marks	
	Calculation of form factor-2 Marks	(4)
6	RMS Value-2 marks	
	Peak Factor-2marks	(4)
7	2+2-4 mortes	(4)
8	2+2-4 marks	(4)
0	P=VIcost W (2 marks)	
	Reacive power is developed in the inductive or capacitive reactance of t	he
	circuit. It is given by Visind (1 1)	(4)
	chedit. It is given by vising(1 mark)	
	Apparent power is the product of rms value of applied voltage and current. Apparent power =VI $VA(1 \text{ mark})$	
9	Minimum 4 points – 1 mark for each point	(4)
10	power factor of the load - 2 marks	(A)
	total power-2 marks	(4)

PART B Answar any four full questions, each carries 10 marks			
11	a	$S = \frac{l}{\mu A}2 \text{ marks}$	(2)
	b	$S=625 \times 10^{6}2$ marks	
		L=1.6 × 10^{-3} H2 marks	
		Energy stored =0.1152J2 marks	(8)
		Emf=1.92V2 marks	
12		Voltage = 18.64 V	
		Node Analysis-5 marks	(10)
		Mesh Analysis-5 marks	
13		Reluctance S= $1/\mu_0\mu_r a = 663,145.6$ (2 marks)	
		$I=S\Phi/N = 66.3 \text{ mA} (2 \text{ marks})$	
		Ring with air gap	
		Sg=795,774.71 (1 mark)	
		ST=S+Sg (1mark)	(10)
		$F=Fa + Fi= (S+Sg) \Phi = H_i l_i + H_g l_g = 291.78 \text{ AT} (1 \text{ mark})$	
		I=F/N=145.89 mA (1 mark)	
		Fraction of AT required =Fa/F=159.15/291.78= 54.5% (2 marks)	
14		Mesh Equations-6 marks	
		Mesh Currents-3 marks	(10)
		Power delivered-1 mark	
15		RMS Value-5 marks	
		Average Value-5 marks	(10)
16		Total admittance =0.26+0.06j mho (4 marks)	
		I= YV=53.36 A (2marks)	(10)
		angle= 12.99 (2 marks)	(10)

t Power factor of the whole circuit =0.974 (lead) (1+1 mark)

PART C

Answer any one full question from each module, each carries10 marks. Module V

17

 $f_0 = \frac{1}{2\pi\sqrt{\mathrm{LC}}}$ $=1/6.28\sqrt{20x10^{-3}x10x10^{-6}}=356$ Hz (2 mark) $I_0 = V/R = 5A$

$$X_{L}=2\pi IL = 44.7\Omega;$$
(10)

$$V_{L} = I_{0}X_{L} = 223.5V (2 mark)$$

$$V_{R} = I_{0}R = 50V (2 mark)$$

$$V_{C} = I_{0}X_{C} = I_{0}/2\pi IC = 223.5V (2 mark)$$

$$Q = V_{L}/V = 4.47 (2 mark)$$
18
When at 50 Hz, I_{R} = 23A (1mark)

$$I_{L}^{2} = 25^{2} - 23^{2}, I_{L} = 9.79 \text{ A (1mark)}$$

$$I_{L}^{2} = 25^{2} - 23^{2}, I_{L} = 9.79 \text{ A (1mark)}$$

$$I_{L}^{-2} = 36^{2} - 23^{2}, I_{L} = 27.7 \text{ A (1mark)}$$

$$X_{L} = 8.3 \text{ Ohm (2 marks)},$$

$$I = 0.075 \text{ H (1mark)}$$

$$A_{L} = 36^{2} - 23^{2}, I_{L} = 27.7 \text{ A (1mark)}$$

$$X_{L} = 8.3 \text{ Ohm (2 marks)},$$

$$f = 17.61 \text{ Hz (2 marks)}$$
Module VI
19 a I_{R} = 23.09 < 0 \text{ A, (1mark)}
$$I_{V} = 15.4 < 150 \text{ A, (1mark)}$$

$$I_{V} = 15.4 < 150 \text{ A, (1mark)}$$

$$I_{U} = 23.09 < 150 \text{ A (1mark)}$$

$$I_{U} = 23.09 < 150 \text{ A (1mark)}$$

$$I_{U} = 23.09 < 150 \text{ A (1mark)}$$

$$I_{U} = 154 + 557 = 1711 \text{ W}$$

$$P = 3 \text{ V}_{PI_{P}} \cos \Phi = 3 \text{ V}_{P} (V_{P}/Z_{P}) - \cos \Phi$$

$$Z_{P} = 30 < 31.3 (5 marks)$$
20 Derivation of W1+W2 = total power - 4 marks
Derivation of W1-W2 = total reactive power - 4 marks
(10)
Derivation of PF = 2 marks
