B1902

FINAL SCHEME FOR VALUATION

Scheme/ Answer Key for Valuation

Scheme of evaluation (marks in brackets) and answers of problems/key

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: PH100

Course Name: ENGINEERING PHYSICS

Max.	Marks: 100 Duration: 3	Hours
	Answer all questions, each carries 2 marks.	Marks
1	Quality factor definition1 mark, factors (frequency and relaxation time)1 mark	(2)
r	Equation alone(Q = $\omega \tau$) $\frac{1}{2}$ mark	
2	y = 5x10 ⁻² sin $\frac{2\pi}{3}(x + 1500t) m$ or similar form($y = 5 \times 10^{-2} \sin 2\pi \left(\frac{x}{3} + \frac{t}{0.002}\right) m$	(2)
3	Obtain the equation from standard wave equation2 marks Condition for minimum intensity (2μt cos r=nλ) 1 mark	
	Explanation based on cosine law 1 mark	(2)
4	Definition $1\frac{1}{2}$ marks . Any relevant point $\frac{1}{2}$ mark.	(2)
5	Definition of plane of vibration 1 mark	(2)
	Definition of Plane of polarization1 mark	
6	Show that susceptibility for superconductors $= -1 2$ marks	(2)
7	Four characteristics(finite, single-valued, continuous, vanish at infinity,	(2)
	square integrable) 2 marks	
8	Correct steps for arriving at $\Delta V = h^{f}$ or h^{3} mentioning Uncertainty principle 2 marks	(2)
9	Definition for absorption coefficient1 $\frac{1}{2}$ marks , Equation or explanation $\frac{1}{2}$ mark	(2)
10	Definition1 mark, use1 mark	(2)
11	Spontaneous emission 1 mark	(2)
	Stimulated emission 1 mark	
12	Definition1 mark	(2)
	Two examples 1 mark	

PART B Answer any 10 questions, each carries 4 marks.

13	Condition (k= ω_0) 1 mark ,Starting from general solution find expression for	(\mathbf{A})
	displacement and give explanation of variation of amplitude with time3 marks.	(4)
14	Fundamental frequency $\gamma = \frac{1}{2l} \sqrt{\frac{T}{m}}$ 1mark, finding linear density(m) = 5.56x10 ⁻⁴ kg/m	(4)
15	1 mark, Substitution and result with unit (T = 288.2 N)2marks $D_n^2 = \frac{4Rn\lambda}{\mu}$ (1 mark)	(4)
16	Substitution & Calculation 2 marks Answer with Unit (R=1.99 m) 1 mark Any four points for each 4 marks,	(4)
	Any four points about grating spectra only3marks.	4)
17	$t = \frac{\lambda}{2(\mu_e - \mu_o)}$. Formula2 marks . Substitution - 1 mark	(4)
	Answer with unit $(t = 27.47 \text{ µm}) 1 \text{ mark}$	
18	Correct explanation 4 marks	(4)
19	Momentum operator $\mathbf{p} = -i\hbar \frac{\partial}{\partial t}$ 2 marks	
	Energy operator $\mathbf{E} = i\hbar \frac{\partial}{\partial t} - 2 \text{ marks}$	(4)
	(Obtaining Hamiltonian operator1 mark only)	
20	Any four postulates 4 marks	(4)
21		
21	Equation $T = 0.163 \frac{V}{A}$ 1 mark, finding T ₁ & T ₂ (A ₁ = 100, A ₂ = 180)2 marks,	(\mathbf{A})
	Answer = T ₁ - T ₂ =4.89 - 2.72 =2.17 s1 mark	(4)
22	Equation, $\left[f=\frac{1}{2l}\sqrt{Y/\rho}\right]$ 1 mark, Substitution & calculation 2 marks	(4)
	Answer with unit [2.75 mm] 1 mark.	()
23	Definition of resonant cavity with figure 2 marks	(4)
	Role in production of laser light(to achieve desired intensity and directionality) -2 marks	(-)
24	Definition of LED 1 mark	(4)
	Explanation of its working with figure 2 marks, Two uses 1 mark	()

PART C

Answer any three questions, each carries 6 marks.

25	Expression for restoring force, damping force and external driving force1 mark	
	Frame differential equation1 mark, Obtaining the solution 4 marks	(6)
26	Figure1 mark , explanation and derivation of path difference 2 marks, Obtaining conditions for max.& min. intensities2 marks, Explanation of colours in thin films1 mark	(6)
27	Graphs $-\frac{1}{2}$ mark each, Any three comparisons 2 marks.	(6)
	One example for each 1 mark, Brief explanation of BCS theory 2 marks	(0)
28	Correct Statement of Uncertainty principle1mark Mathematical expression $\Delta x \ \Delta p \ge \frac{h}{4\pi}$ (or $\frac{h}{2\pi}$)1mark Substitution1mark Result with proper units($\Delta p = 1.05X10^{-20}$ Kg m/s) 1mark Equation for Energy T= pc $\frac{1}{2}$ mark Result with proper units(T=20 Mev) $\frac{1}{2}$ mark Explanation1mark	(6)
	PART D	

Answer any three questions, each carries 6 marks.

29	Write any six Factors affecting acoustics of buildings and their remedies1mark each	(6)
30	Definition of ultrasonic waves1 mark, explain NDT 1 mark, Explain how the ultrasonic pulse technique is used for non-destructive testing of materials 4 marks.	(6)
31	Explanation of construction with figure 2 marks Labelled Energy level diagram 2 marks, Explanation of working 2 marks.	(6)
32	Figure1 mark, Derivation of NA3 marks, Four applications2 marks	(6)
