B1902
 FINAL SCHEME FOR VALUATION

Scheme/ Answer Key for Valuation

Scheme of evaluation (marks in brackets) and answers of problems/key

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: PH100

Course Name: ENGINEERING PHYSICS
Max. Marks: 100
PART A
Answer all questions, each carries 2 marks.
1 Quality factor definition ----1 mark, factors (frequency and relaxation time)---1 mark Equation alone($Q=\omega \tau$) $---\frac{1}{2}$ mark
$y=5 \times 10^{-2} \sin \frac{2 \pi}{3}(x+1500 t) m$ or similar form $\left(y=5 \times 10^{-2} \sin 2 \pi\left(\frac{x}{3}+\frac{t}{0.002}\right) \mathrm{m}\right.$
Obtain the equation from standard wave equation -----2 marks
Condition for minimum intensity ($2 \mu \mathrm{t} \cos r=n \lambda$)---- 1 mark
Explanation based on cosine law ---- 1 mark
Definition ----- $1 \frac{1}{2}$ marks. Any relevant point ----- $\frac{1}{2}$ mark.
Definition of plane of vibration ----- 1 mark
Definition of Plane of polarization -----1 mark
Show that susceptibility for superconductors $=\mathbf{- 1}----\mathbf{- ~}^{2}$ marks

Four characteristics(finite, single-valued, continuous ,vanish at infinity, square integrable) ----- 2 marks
Correct steps for arriving at $\Delta V=h^{f}$ or h^{3} mentioning Uncertainty principle ----- 2 marks
9 Definition for absorption coefficient ---1 $\frac{1}{2}$ marks ,Equation or explanation ---- $\frac{1}{2}$ mark
Definition ----1 mark, use----1 mark
Spontaneous emission ---- 1 mark
Stimulated emission ---- 1 mark
12 Definition ---1 mark
Two examples ---- 1 mark

PART B

Answer any 10 questions, each carries 4 marks.

Condition $\left(k=\omega_{0}\right)$--- 1 mark ,Starting from general solution find expression for displacement and give explanation of variation of amplitude with time ---3 marks.

Fundamental frequency $\gamma=\frac{1}{2 l} \sqrt{\frac{T}{m}}--1$ mark,finding linear density $(m)=5.56 \times 10^{-4} \mathrm{~kg} / \mathrm{m}$
----1 mark, Substitution and result with unit ($\mathrm{T}=288.2 \mathrm{~N}$)----2marks
$D_{n}{ }^{2}=\frac{4 R n \lambda}{\mu}$
------(1 mark)
Substitution \& Calculation ----- 2 marks
Answer with Unit ($\mathrm{R}=1.99 \mathrm{~m}$) ----- 1 mark
Any four points for each -- --- 4 marks,
Any four points about grating spectra only----3marks.

$$
\begin{equation*}
\boldsymbol{t}=\frac{\boldsymbol{\lambda}}{\mathbf{2}\left(\boldsymbol{\mu}_{\boldsymbol{e}}-\boldsymbol{\mu}_{o}\right)}, \text { Formula -----2 marks , Substitution- } 1 \text { mark } \tag{4}
\end{equation*}
$$

Answer with unit $(t=27.47 \mu \mathrm{~m})----1$ mark
Correct explanation ----- 4 marks
Momentum operator $\mathbf{p}=-i \hbar \frac{\partial}{\partial \mathrm{x}}----2$ marks
Energy operator $\quad \mathbf{E}=i \hbar \frac{\partial}{\partial \mathrm{t}}---2$ marks
(Obtaining Hamiltonian operator---1 mark only)
Any four postulates ---- 4 marks

Equation $T=0.163 \frac{V}{A}---1$ mark, finding $\mathrm{T}_{1} \& \mathrm{~T}_{2}\left(\mathrm{~A}_{1}=100, \mathrm{~A}_{2}=180\right)---2$ marks,
Answer $=\mathrm{T}_{1}-\mathrm{T}_{2}=4.89-2.72=2.17 \mathrm{~s}--1$ mark

Equation, $\left.\left[\mathrm{f}=\frac{1}{2 l} \sqrt{ } \mathrm{Y} / \rho\right)\right]$---- 1 mark, Substitution \& calculation --- 2 marks
Answer with unit [2.75 mm]---- 1 mark.
Definition of resonant cavity with figure ---- 2 marks
Role in production of laser light(to achieve desired intensity and directionality) -2 marks
Definition of LED --- 1 mark
Explanation of its working with figure --- 2 marks, Two uses ---- 1 mark

PART C

Answer any three questions, each carries 6 marks.

Expression for restoring force, damping force and external driving force --1 mark
Frame differential equation----1 mark, Obtaining the solution ---- 4 marks

Figure ----1 mark, explanation and derivation of path difference ---- 2 marks, Obtaining conditions for max.\& min. intensities----2 marks,
Explanation of colours in thin films ----1 mark
Graphs $-\frac{1}{2}$ mark each, Any three comparisons ---- 2 marks.
One example for each --- 1 mark, Brief explanation of BCS theory ---- 2 marks
Correct Statement of Uncertainty principle -----1mark
Mathematical expression $\Delta x \Delta p \geq \frac{h}{4 \pi}$ (or $\frac{h}{2 \pi}$)----1mark
Substitution -----1mark
Result with proper units($\Delta p=1.05 \times 10^{-20} \mathrm{Kg} \mathrm{m} / \mathrm{s}$)--- 1 mark
Equation for Energy T=pc ---- $\frac{1}{2}$ mark
Result with proper units(T=20 Mev) ---- $\frac{1}{2}$ mark
Explanation ------1mark

PART D

Answer any three questions, each carries 6 marks.

Write any six Factors affecting acoustics of buildings and their remedies- --1mark each

0 Definition of ultrasonic waves--1 mark, explain NDT--- 1 mark, Explain how the ultrasonic pulse technique is used for non-destructive testing of materials.--- 4 marks.

Explanation of construction with figure ----- 2 marks
Labelled Energy level diagram--- 2 marks, Explanation of working---- 2 marks.

Figure ---1 mark, Derivation of NA ----3 marks, Four applications- ---2 marks

