Name: \qquad
\qquad
M.Tech. Degree Examination - December 2015

APJ Abdul Kalam Technological University - Cluster No. 04
Subject : 04 CS 6405-Automata Theory and Computability

Part A (Answer All, Each Carries 03 Marks)

1. What language is represented by the following DFA ?

2. Design a DFA which accepts precisely the set of all binary strings having odd number of 0 s and odd number of 1s.
3. What language is represented by the regular expression: $b(a+b)^{*}+(b+a)^{*} a$?
4. Give a regular expression for the language: $\mathcal{L}=\left\{w \in\{a, b\}^{*} \mid w\right.$ does not contain consecutive $\left.a \mathrm{~s}\right\}$.
5. What language is represented by the MSO sentence: $\forall x\left(\left(\neg \operatorname{last}(x) \wedge Q_{b}(x) \wedge \operatorname{succ}(x, y)\right) \Longrightarrow Q_{a}(y)\right)$.
6. How many equivalence classes are there in the canonical Myhill Nerode relation for the language $\mathcal{L}=\left\{w \in\{a, b\}^{*} \mid\right.$ length (w) is a multiple of 3$\}$
7. Argue that condition in the Parikh's theorem is not sufficient for proving that a language is context-free.
8. Let \mathcal{L} be a non-recursive language recognised by a Turing Machine. Then what you can say about the complement of \mathcal{L} ?
[08 X 03 = 24 Marks]

Part B (Answer All, Each Carries 06 Marks)

[06 X $06=36$ Marks]
9. Give an NFA for the language $\mathcal{L}=\left\{0 w 1 \mid w \in\{0,1\}^{*}\right\}$. Also apply subset construction on the NFA to obtain the equivalent DFA.

OR
10. Obtain the unique-minimal DFA corresponding to the canonical MN relation representing the language recognised by the following DFA.

11. Give an MSO sentence representing the language $\mathcal{L}=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains the substring $\left.a b b\right\}$.

OR
12. Give an MSO sentence representing the language over the alphabet set $\{a, b\}$, where each string in the language contains odd number of $b s$.
13. Prove that the language $\mathcal{L}=\left\{a^{n} \mid \mathrm{n}\right.$ is prime $\}$ is not regular.

OR

14. Using MN Theorem argue that the language $\mathcal{L}=\left\{a^{3 * n} \mid n \geq 0\right\}$ is regular.
15. Give a Context-Free Grammar (CFG) for the language: $\mathcal{L}=\left\{a^{m} b^{n} \mid n>m\right\}$.

OR

16. Give a PDA (accepts by emptying stack) accepting the language $\mathcal{L}=\left\{w \in\{a, b\}^{*} \mid \#_{a}(w)=2 * \#_{b}(w)\right\}$, where the notation $\#_{0}(w)$ represents the number of zeros present in w. (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a, X)=(q, Y X)$ is represented by the edge $(\mathfrak{D} \xrightarrow{(a, X) / Y X}$ @.)
17. Design a Turing Machine for checking whether a number m is greater than or equal to a number n. Assume that the tape initially contains the unary representations of m and n separated by the symbol $\$$. That is the initial tape content will be $+1^{m} \$ 1^{n} b^{\omega}$, where b represents the blank symbol. Design the Turing Machine to halt in the state t if $m \geq n$ and to halt in the state r if $m<n$. (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a)=(q, b, R)$ is represented by the edge (D) $\xrightarrow{a /(b, R)}$ ()

OR

18. Design a Turing Machine to accept the language $\mathcal{L}=\left\{w \in\{a, b\}^{*} \mid\right.$ length (w) is even $\}$. (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a)=(q, b, R)$ is represented by the edge $(\mathfrak{P} \xrightarrow{a /(b, R)}$ @.)
19. Show without using Rice's Theorem that the language $C F L=\{M \mid \mathcal{L}(M)$ is context-free $\}$ is not decidable.

OR

20. State and prove Rice's second theorem.
