a, b

Name: Roll No.:

M.Tech. Degree Examination - December 2015 APJ Abdul Kalam Technological University - Cluster No. 04 Branch/Specialisation : CSE/Computer Science and Systems Engineering Subject : 04 CS 6405 - Automata Theory and Computability

Time: 03 Hrs

Part A (Answer All, Each Carries 03 Marks)

1. What language is represented by the following DFA ?

- 2. Design a DFA which accepts precisely the set of all binary strings having odd number of 0s and odd number of 1s.
- 3. What language is represented by the regular expression: $b(a + b)^* + (b + a)^*a$?
- 4. Give a regular expression for the language: $\mathcal{L} = \{w \in \{a, b\}^* \mid w \text{ does not contain consecutive } as\}.$
- 5. What language is represented by the MSO sentence: $\forall x ((\neg last(x) \land Q_b(x) \land succ(x, y)) \implies Q_a(y)).$
- 6. How many equivalence classes are there in the canonical Myhill Nerode relation for the language $\mathcal{L} = \{w \in \{a, b\}^* \mid \text{length}(w) \text{ is a multiple of } 3\}$
- 7. Argue that condition in the Parikh's theorem is not sufficient for proving that a language is context-free.
- 8. Let \mathcal{L} be a non-recursive language recognised by a Turing Machine. Then what you can say about the complement of \mathcal{L} ?

[08 X 03 = 24 Marks]

Part B (Answer All, Each Carries 06 Marks)

[06 X 06 = 36 Marks]

9. Give an NFA for the language $\mathcal{L} = \{0w1 \mid w \in \{0, 1\}^*\}$. Also apply subset construction on the NFA to obtain the equivalent DFA.

OR

10. Obtain the unique-minimal DFA corresponding to the canonical MN relation representing the language recognised by the following DFA.

11. Give an MSO sentence representing the language $\mathcal{L} = \{w \in \{a, b\}^* \mid w \text{ contains the substring } abb\}.$

OR

12. Give an MSO sentence representing the language over the alphabet set $\{a, b\}$, where each string in the language contains odd number of *bs*.

1

Max. Marks: 60

13. Prove that the language $\mathcal{L} = \{a^n \mid n \text{ is prime}\}\$ is not regular.

OR

- 14. Using MN Theorem argue that the language $\mathcal{L} = \{a^{3*n} | n \ge 0\}$ is regular.
- 15. Give a Context-Free Grammar (CFG) for the language: $\mathcal{L} = \{a^m b^n \mid n > m\}.$

OR

- 16. Give a PDA (accepts by emptying stack) accepting the language $\mathcal{L} = \{w \in \{a, b\}^* \mid \#_a(w) = 2 * \#_b(w)\}$, where the notation $\#_0(w)$ represents the number of zeros present in w. (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a, X) = (q, YX)$ is represented by the edge $\bigoplus \xrightarrow{(a,X)/YX} (\bigoplus)$.)
- 17. Design a Turing Machine for checking whether a number *m* is greater than or equal to a number *n*. Assume that the tape initially contains the unary representations of *m* and *n* separated by the symbol \$. That is the initial tape content will be $\vdash 1^m \$1^n b^{\omega}$, where b represents the blank symbol. Design the Turing Machine to halt in the state *t* if $m \ge n$ and to halt in the state *r* if m < n. (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a) = (q, b, R)$ is represented by the edge $\bigoplus \frac{a/(b,R)}{Q}$.

OR

- 18. Design a Turing Machine to accept the language $\mathcal{L} = \{w \in \{a, b\}^* \mid \text{length}(w) \text{ is even}\}$. (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a) = (q, b, R)$ is represented by the edge $(p) \xrightarrow{a/(b,R)} (Q)$.)
- 19. Show without using Rice's Theorem that the language $CFL = \{M \mid \mathcal{L}(M) \text{ is context-free}\}$ is not decidable.

OR

20. State and prove Rice's second theorem.