

10		Unit vector along $\mathrm{AB}=-7 i+3 j-5 k$ Force vector $=\frac{P}{\sqrt{83}}(-7 i+3 j-5 k)$ Moment vector $=\frac{P}{\sqrt{83}}(-17 i-8 j+19 k)$ $\mathrm{P}=911 \mathrm{~N}$ $\mathrm{M}_{\mathrm{x}}=-1700 \mathrm{~N}$ $\mathrm{M}_{\mathrm{y}}=-800 \mathrm{~N}$	(10)
11		3 equations of equilibrium (formula with substitution) $\Sigma \mathrm{F}_{\mathrm{x}}=-80 \mathrm{~N}$ $\Sigma \mathrm{~F}_{\mathrm{y}}=-238.56 \mathrm{~N}$ Resultant $=251.6 \mathrm{~N}$ Angle with horizontal $=71^{0} 27$ Perpendicular distance of line of action of R with respect to $\mathrm{A}=5.96 \mathrm{~m}$ or Hor.distance of the resultant w r to $\mathrm{A}=6.13 \mathrm{~m}$ $* * *$ Marks may be given to students if they have fixed position wrto any other point, iffound correct. Resultant shown in figure	(10)
SET II(ANSWER ANY 2 QUESTIONS : $2 \times 10=20$ MARKS			
12		Free body diagram of block and wedge Equation formulation of block and wedge Calculation of reactionsat contact surfaces $\left(\mathrm{R}_{1 \&} \mathrm{R}_{2}\right)$ Reaction between block and Wedge $B, R_{2}=565.16 \mathrm{~N}$ Reaction from support to wedge $\mathrm{B}=488.73 \mathrm{~N}$ Force $\mathrm{P}=410.27 \mathrm{~N}$	(10)
13		```X from left axis =5 m (1) Y from bottom axis=4.26m(3) IXX}=275.71\mp@subsup{m}{}{4}(6```	(10)
14	a)	FBD Equations of equilibrium (upward and downward motion Least force $=364 \mathrm{~N}$ Greatest force $=839 \mathrm{~N}$	(6)
	b)	$\mathrm{I}_{\mathrm{XX}}=13824 \mathrm{~mm}^{4}$ $\mathrm{I}_{\mathrm{YY}}=55296 \mathrm{~mm}^{4}$ $\mathrm{I}_{\mathrm{XY}}=20736 \mathrm{~mm}^{4}$ I_{XX} at 30^{0} to $\mathrm{OX}=6234 \mathrm{~mm}^{4}$ (1)	(4)
SET III (ANSWER ANY 2 QUESTIONS : 2 X $10=20$ MARKS			
15		Free body diagrams of bodies (2) Equations of equilibrium	(10)

