\qquad Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
FIRST SEMESTER B.TECH DEGREE EXAMINATION,DECEMBER 2018

Course Code: MA101

Course Name: CALCULUS
Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions, each carries 5 marks.
1 a) Test the convergence of $\sum_{k=1}^{\infty} \frac{\cos k}{k^{2}}$
b) Discuss the convergence of $\sum_{k=1}^{\infty} \frac{(2 k)!}{4^{k}}$

2
a) Find the slope of the surface $z=\sin \left(y^{2}-4 x\right)$ in the x - direction at the point $(3,1)$.
b) Find the differential $d z$ of the function $z=\tan ^{-1}\left(x^{2} y\right)$.

3 a) Find the direction in which the function $f(x, y)=x e^{y}$ decreases fastest at the point $(2,0)$.
b) Find the tangent plane to the elliptic paraboloid $z=2 x^{2}+y^{2}$ at $(1,1,3)$
a) Evaluate $\iint_{R} y \sin x y d A$, where $\boldsymbol{R}=[1,2] \times[0, \pi]$.
b) Evaluate $\int_{0}^{2} \int_{0}^{1} \frac{x}{(1+x y)^{2}} d y d x$
a) if $\vec{A}=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} \boldsymbol{k}$, evaluate $\int \vec{A} \cdot d \vec{r}$ from $(0,0,0)$ to $(1,1,1)$
along the path, $x=t, y=t^{2}, z=t^{3}$
b) Prove that $\vec{F}=\left(x^{2}-y z\right) i+\left(y^{2}-x z\right) \boldsymbol{j}+\left(z^{2}-x y\right) k$ is irrotational.

6 a) Determine the source and sink of the vector field
$\boldsymbol{F}(x, y, z)=2\left(x^{3}-2 x\right) \boldsymbol{i}+2\left(y^{3}-2 y\right) \boldsymbol{j}+2\left(z^{3}-2 z\right) \boldsymbol{k}$
b) Evaluate $\iint_{S} \bar{F} \cdot \bar{n} d s$ where S is the surface of the cylinder $x^{2}+y^{2}=4, z=0$, $z=3$ where $\bar{F}=(2 x-y) \bar{\imath}+(2 y-z) \bar{J}+z^{2} \bar{k}$

PART B
Module 1

Answer any two questions, each carries 5 marks.

7 Check the convergence of the series $\frac{3}{4}+\frac{3.4}{4.6}+\frac{3.45}{4.6 .8}+\frac{3.4 .5 .6}{4.6 .8 .10}+\cdots$
Find the radius of convergence of the power series $\sum_{k=1}^{\infty} \frac{(-1)^{k}(x-4)^{k}}{3^{k}}$
9 Determine whether the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{3^{z k-1}}{k^{z}+1}$ is absolutely convergent.

Module 1I
Answer any two questions, each carries 5 marks.

If $u=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right)$, find $\frac{\partial^{2} u}{\partial x \partial y}$
Let $z=x y e^{\frac{x}{y}}, x=r \cos \theta, y=r \sin \theta$, use chain rule to evaluate $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ at $r=2$ and $\theta=\frac{\pi}{6}$
A rectangular box open at the top is to have volume $32 m^{3}$. Find the dimensions of the box requiring least material for its construction.

Module III

Answer any two questions, each carries 5 marks.

Suppose that a particle moves along a circular helix in 3-space so that its position vector at time \mathbf{t} is $\mathbf{r}(\mathrm{t})=4 \cos \pi t \mathbf{i}+4 \sin \pi t \mathbf{j}+\boldsymbol{t} \boldsymbol{k}$. Find the distance travelled and the displacement of the particle during the time interval

$$
1 \leq t \leq 5 .
$$

Suppose that the position vector of a particle moving in a plane $\bar{r}=12 \sqrt{t} i+t^{\frac{s}{2}} \boldsymbol{j}, t>0$. Find the minimum speed of the particle and locate when it has minimum speed?
Find the parametric equation of the tangent line to the curve $x=\cos t, y=\sin t, z=t \quad$ where $\mathrm{t}=\mathrm{t}_{0}$ and use this result to find the parametric equation of the tangent line to the point where $\mathrm{t}=\pi$.

Module 1V

Answer any two questions, each carries 5 marks.

Evaluate $\iint_{R} y d A$ where R is the region in the first quadrant enclosed between the circle $x^{2}+y^{2}=25$ and the line $x+y=5$.
Evaluate $\int_{1}^{2} \int_{0}^{x} \frac{d y d x}{x^{2}+y^{2}}$
Evaluate $\iint_{V} x d x d y d z$ where V is the volume of the tetrahedron bounded by the
plane $\quad x=0, y=0, z=0 x+y+z=a$.

Module V

Answer any three questions, each carries 5 marks.

Find the scalar potential of $\vec{F}=\left(2 x y+z^{3}\right) \boldsymbol{i}+x^{2} \boldsymbol{j}+3 x z^{2} \boldsymbol{k}$
Find the work done $\operatorname{by} F(x, y)=\left(x^{2}+y^{2}\right) \boldsymbol{i}-x j$ along the curve $C: x^{2}+y^{2}=1$ counter clockwise from $(1,0)$ to $(0,1)$.

Evaluate $\int_{C} \bar{F} \cdot d \bar{r}$ where $\bar{F}=y^{2} \boldsymbol{i}+x y \boldsymbol{j}$ and $\overline{\boldsymbol{r}}(t)=t \boldsymbol{i}+2 t \boldsymbol{j}, 1 \leq t \leq 3$.

If $\bar{r}=x \bar{\imath}+y \bar{\jmath}+z \bar{k}$ and $=\|\bar{r}\|$, prove that $\nabla^{2} f(r)=\frac{2}{r} f^{\prime}(r)+f^{\prime \prime}(r)$.

Module VI

Answer any three questions, each carries 5 marks.

24 Using Stoke's theorem evaluate $\int_{G} \bar{F} . d \bar{r}$; where $\bar{F}=x y \bar{\imath}+y z \bar{J}+x z \bar{k} ; C$ triangular path in the plane $x+y+z=1$ with vertices at $(1,0,0),(0,1,0)$ and $(0,0,1)$ in the first octant
25 Using Green's theorem evaluate $\int_{C}\left(y^{2}-7 y\right) d x+(2 x y+2 x) d y$ where C is the circle $x^{2}+y^{2}=1$
26 Find the mass of the lamina that is the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ between $z=1$ and $z=3$ if the density is $\emptyset(x, y, z)=x^{2} z$.

27 Use divergence theorem to find the outward flux of the vector field $F(x, y, z)=x^{3} i+y^{3} j+z^{3} k$ across the surface σ bounded by $x^{2}+y^{2}=4, z=0$ and $z=4$.
If S is the surface of the sphere $x^{2}+y^{2}+z^{2}=\mathbf{1}$,Evaluate

$$
\begin{equation*}
\iint_{s}(x i+2 y j+3 z k) \cdot d S \tag{5}
\end{equation*}
$$

