S2028

Scheme/Answer Key for Valuation

Scheme of evaluation(marks in brackets) and answers of problems/key
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: EE100
 Course Name: BASICS OF ELECTRICAL ENGINEERING

Max. Marks: 100
Duration: 3 Hours

PART A

1. KCL statement \& explanation - (2 marks)

KVL statement \& explanation - (2 marks)
2. Any 4 comparisons -4 marks
3. $\mathrm{I}=\operatorname{Im} /(\sqrt{2})$ - (1 mark)

Answer : RMS Value I=10.61A $\quad-(1$ mark $)$
$\mathrm{I}_{\mathrm{av}}=2 \operatorname{Im} / \pi \quad$ - (1 mark)
Answer : Average value $\mathrm{I}_{\mathrm{av}}=9.55 \mathrm{~A} \quad-(1 \mathrm{mark})$
4. Phase angle: I lags V by 90°

Proof:
starting from $\mathrm{v}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})$ and deriving $\mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin \left(\omega \mathrm{t}-90^{\circ}\right) \quad-(3$ marks $)$
5. Four points - (4 marks)
6. Primary transmission:

Secondary transmission:
(2 marks)
7. principle of operation
(2 marks)
(4 marks)
8. back e.m.f. explanation (3 marks)
Voltage equation
(1 mark)
9. $\mathrm{Ns}=\frac{120 f}{P}$ (1 mark)

$$
\mathrm{Ns}=1000 \mathrm{rpm} \quad(1 \mathrm{mark})
$$

$\mathrm{N}=(1-\mathrm{s}) \mathrm{Ns}$	$(1 \mathrm{mark})$
$\mathrm{N}=980 \mathrm{rpm}$	$(1$ mark $)$

10. Diagram - (1 mark)

Working - (3 marks)

PART B

11. Applying KCL at node 1,
(3 marks)

$$
(\mathrm{V} 1-60) / 20+(\mathrm{V} 1-\mathrm{V} 2) / 30=1
$$

Applying KCL at node 2, $(\mathrm{V} 2-\mathrm{V} 1) / 30+(\mathrm{V} 2-40) / 50+\mathrm{V} 2 / 100=0$ $\mathrm{V} 2=48 \mathrm{~V} \quad$ (2 marks)
Current through 100 ohm resistor $=\mathrm{V} 2 / 100=0.48 \mathrm{~A} \quad(2$ marks $)$
(note : If the candidate has found the node voltage equation in matrix form, then also 6 marks should be given. It is not mandatory that the student should show the derivation of the equations using KCL)
12. a) $\mathrm{B}_{\mathrm{g}}=0.4 \mathrm{~Wb} / \mathrm{m}^{2} \mu_{\mathrm{r}}=400 \quad \mathrm{l}_{\mathrm{g}}=6 \times 10^{-3} \mathrm{~m} \quad \mathrm{~A}=12 \times 10^{-4} \mathrm{~m}^{2} \quad \mathrm{l}_{\mathrm{i}}=60 \times 10^{-2} \mathrm{~m}$

$$
\Phi=\mathrm{B}_{\mathrm{g}} \mathrm{~A}=0.4 \times 12 \times 10^{-4}=4.8 \times 10^{-4} \mathrm{~Wb}
$$

(2 marks)
$\mathrm{S}=\mathrm{S}_{\mathrm{g}}+\mathrm{S}_{\mathrm{i}}=\left(\mathrm{l}_{\mathrm{i}} / \mu_{0} \mu_{\mathrm{r}} \mathrm{A}\right)+\left(\mathrm{l}_{\mathrm{g}} / \mu_{0} \mathrm{~A}\right)=\left[\left(60 \times 10^{-2}\right) /\left(4 \times \pi \times 10^{-7} \times 400 \times 12 \times 10^{-4}\right)\right]+$ $\left[\left(6 \times 10^{-3}\right) /\left(4 \times \pi \times 10^{-7} \times 12 \times 10^{-4}\right)\right]=497.3 \times 10^{4} \mathrm{AT} / \mathrm{Wb}$
$\mathrm{Mmf}=\mathrm{S} \times \Phi=497.3 \times 10^{4} \times 4.8 \times 10^{-4}=2387.04 \mathrm{AT}$
b) Energy derivation (4 mark)
13.
(i) Star
phase voltage $\mathrm{V}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}} / \sqrt{ } 3=239.6 \mathrm{~V} \quad-(1$ mark $)$
phase current $\mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}=32.2 \mathrm{~A}-\square-(1$ mark $)$
power factor $=\mathrm{R} / \mathrm{Z}=0.538 \quad-(1$ mark $)$
$\mathrm{P}=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \phi=12.4 \mathrm{~kW}$

- (2 marks)
(ii) Delta
phase voltage $\mathrm{V}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{L}}=415 \mathrm{~V} \quad-(1$ mark $)$
phase current $=\mathrm{I}_{\mathrm{ph}}=\mathrm{V}_{\mathrm{ph}} / \mathrm{Z}=55.78 \mathrm{~A} \quad-(1 \mathrm{mark})$
power factor $=R / Z=0.538 \quad-(1$ mark $)$

$$
\mathrm{P}=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \phi=37.3 \mathrm{~kW} \quad-(2 \text { marks })
$$

14. a)

(i)	$\mathrm{X}_{\mathrm{L}}=100 \mathrm{ohm}$	$-(1$ mark $)$
(ii)	$\mathrm{L}=0.318 \mathrm{H}$	$-(1 \mathrm{mark})$
(iii)	$\mathrm{P}=0$ (purely inductive coil)	$-(1$ mark $)$
(iv)	$\mathrm{v}=311.13 \sin (314 \mathrm{t})$	$-(1$ mark $)$
	$\mathrm{i}=3.11 \sin \left(314 \mathrm{t}-90^{\circ}\right)$	$-(1$ mark $)$

b) Circuit diagram with line and phase voltages and currents labelled

$$
\begin{aligned}
& -(1 \text { mark }) \\
& -(1 \text { mark })
\end{aligned}
$$

15. Block diagram: (4 marks)

Explanation : (6 marks)
16. Five marks each
17. a) Construction - (3 marks)

Working - (2 marks)
b) Equation for Eg - (1 mark)

$$
\mathrm{Eg}=2000 \mathrm{~V}-(4 \text { mark })
$$

18. $\eta=$ output/(output + losses $)=\mathrm{kVA} * \mathrm{pf} /\left(\mathrm{kVA} * \mathrm{pf}+\mathrm{W}_{\mathrm{cu}}+\mathrm{W}_{\mathrm{i}}\right)$ (4 marks)
(a) 96.1%
(6 marks)
(According to the syllabus, the students have to study the equation of full load efficiency and application of the same in numerical. Hence part (b) and (c) can be neglected.)
19. a) Constructional details of squirrel cage -(5 marks)
b) Constructional details of slip ring

- (5 marks)

20.

Circuit Diagram	$(3$ marks $)$
Explanation	$(3$ marks $)$
Comparison with split-phase motor	$(3$ marks $)$
one application	$(1$ marks $)$

