APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key
FIRST SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019
Course Code: MA101
Course Name: CALCULUS
Max. Marks: 100

PART A

1 a $\rho=\lim _{k \rightarrow \infty} \frac{3 k-4}{4 k-5}=\frac{3}{4}<1$
Thus by Cauchy's Root test the series converges.
b Series; $f(0)=1, f^{\prime}(0)=-1, f^{\prime}(0)=2, f^{\prime}{ }^{\prime} \prime(0)=-6$;
$f(x)=1-x+x^{2}-x^{3} \ldots \ldots \ldots .(1+1+1) \ldots$ OR By Binomial series
a $z_{y y}=48(3 x-2 y)^{2}{ }_{s} z_{y y y}=-192(3 x-2 y)$,
$z_{y y y x}=-576$ (Full marks may be given if the answer is correct to the question taken by student as there was lack of clarity in the power in the printed question paper)
b $u_{x}=\frac{\sec ^{2} x}{\tan x+\tan y+\tan z}, \sin 2 x u_{x}=\frac{2 \tan x}{\tan x+\tan y+\tan z}$
$\sin 2 y u_{y}=\frac{2 \tan y}{\tan x+\tan y+\tan z^{\prime}}, \sin 2 z u_{z}=\frac{2 \tan z}{\tan x+\tan y+\tan z}$
Substitution \& getting $\sin 2 x \frac{\partial w}{\partial x}+\sin 2 y \frac{\partial w}{\partial y}+\sin 2 z \frac{\partial w}{\partial y}=2$
a $\quad\left(\frac{d \vec{r}}{d t}\right)=-2 \sin t \vec{i}+2 \cos t \vec{j}+\vec{k}$
(1) $\left\|\frac{d \vec{r}}{d t}\right\|=\sqrt{5}$
b $y=\int(\cos t i+\sin t j) d t$ 1 mark
$y=\sin t i-\cos t j+\vec{c}$ 1 mark

Applying initial condition; $\vec{c}=i$ 1mark

4 a $\int_{0}^{1} \int_{0}^{x^{2}} 2 d z d x$ 1 mark

Ans:2/3 1 mark
b $\iint x y d x d y=\int_{0}^{b} \int_{0}^{\frac{a}{b} \sqrt{b^{2}-y^{2}}} x y d x d y$.
$=\int_{0}^{b} \frac{y}{2}\left(\frac{a^{x}}{b^{2}}\left(b^{2-} y^{2}\right)\right) d y$
$=\left[\frac{a^{z}}{2 b^{z}}\left(\frac{b^{z} y^{z}}{2}-\frac{y^{4}}{4}\right)\right]_{0}^{b}$

5
a $\quad \frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}=6 x y^{2}(1+1)$
OR Curl $\mathrm{F}=0(1+1)$
b

$$
\begin{aligned}
& \bar{r}=x \bar{\imath}+y \bar{J}+z \bar{k}, r=\|\bar{r}\|=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \begin{array}{c}
\nabla \cdot \frac{\bar{r}}{r^{3}}=\left(\frac{\partial}{\partial x} \bar{\imath}+\frac{\partial}{\partial y} \bar{\jmath}+\frac{\partial}{\partial z} \bar{k}\right) \cdot\left(\frac{x \bar{\imath}+y \bar{\jmath}+z \bar{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right) \quad \text { (} 1 \text { mark) } \\
=\Sigma \frac{\partial}{\partial x}\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)(1 \text { mark) }
\end{array}
\end{aligned}
$$

$=0$ (1 mark) (Full marks may be given with suitable step marks for alternate methods)

$$
\bar{F}=e^{x} \bar{\imath}+2 y \bar{\jmath}-\bar{k} \Rightarrow \operatorname{curl} \bar{F}=0
$$

Hence

$$
\oint_{C}\left(e^{x} d x+2 y d y-d z\right)=0(1 \text { mark })
$$

b ByGreen'stheorem, $\int_{C} x d y-y d x=\iint_{R} \frac{\partial(x)}{\partial x}-\frac{\partial(-y)}{\partial y} \mathrm{dA}$ (1 mark)

$$
=\iint_{R} 2 \mathrm{dA}
$$

$$
\begin{equation*}
=2 \times \text { Area of circle } \tag{1}
\end{equation*}
$$

$=8 \pi(1$ mark $)$

PART B

MODULE I

$$
\begin{align*}
& a_{k}=\frac{1}{\left(8 k^{2}-3 k\right)^{1 / z}}, b_{k}=\frac{1}{\left(8 k^{2}\right)^{1 / z}} \frac{1}{2 k^{2 / z}} \tag{1+1+1}\\
& \rho=\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=1>0 \tag{1}
\end{align*}
$$

By limit comparison test the series diverges.
(Full marks may be given if the answer is correct to the question taken by student as there was lack of clarity in the power in the printed question paper)
$8 \quad$ Let $\sum a_{k}=\sum_{k-0}^{\infty} \frac{(2 x-1)^{k}}{3^{2 \mathbb{Z}}}$.
$l=\lim _{k \rightarrow \infty} \frac{\left\|a_{k+1}\right\|}{\left\|a_{k}\right\|}=\lim _{k \rightarrow \infty} \frac{\| 2 x-\left.1\right|^{k+1} 3^{2 k}}{3^{2 k+2}|2 x-1|^{k}}=\frac{|2 x-1|}{9}$.
By ratio test for absolute convergence, series converges absolutely only
when $l<1$. Therefore $|2 x-1|<9 \Rightarrow x \in(-4,5)$.
At $x=-4, \sum a_{k}=\Sigma(-1)^{k}$, diverges. At $x=5, \sum a_{k}=\sum 1^{k}{ }^{\prime}$ diverges.
Interval of convergence $=(-4,5)$
Radius of convergence $=9$.

$$
\begin{equation*}
\rho=\lim _{k \rightarrow \infty}\left(\frac{k}{k+1}\right)^{k}=\frac{1}{e}<1(2+2) \tag{5}
\end{equation*}
$$

Thus by Cauchy's Root test the series converges.
(Full marks may be given if the answer is correct to the question taken by student as there was lack of clarity in the power in the printed question paper)

MODULE II

$\frac{d w}{d \theta} \quad$ formula and substitution

$$
\begin{align*}
& \frac{d w}{d \theta}=\tan \theta \sec \theta \tag{2}\\
& \frac{d w}{d \theta} \text { at } \theta=\frac{\pi}{4}=\sqrt{2}
\end{align*}
$$

OR Direct chain rule and substitution (suitable marks distribution)
$f_{x}=\frac{1}{x}, f_{y}=\frac{1}{y}$
$f_{x}(1,2)=1, f_{y}(1,2)=\frac{1}{2}$
$L(1.01,2.01)=0.70814718, f(1.01,2.01)=0.70808505$
$Q=0.0141421356$
Error is less than $\frac{1}{250}$ times the distance between points P and Q.
12

$$
\begin{align*}
& f_{x}-y-\frac{8}{x^{2}}, f_{y}-x-\frac{8}{y^{2}}, \\
& r=f_{x x}=\frac{16}{x^{3}}, s=f_{x y}=\frac{16}{y^{3}}, t=f_{y y}=1 \tag{1}
\end{align*}
$$

$D=r t-s^{2}=3$.
At $(2,2), D>0$ and $r>0 .(2,2)$ is a relative minimum.(1)

MODULE III

13

$$
\begin{align*}
& T(t)=\frac{-a \sin t \vec{i}+a \cos t \vec{j}+c \vec{k}}{\sqrt{a^{2}+c^{2}}} \tag{5}\\
& N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|}=-\cos t \vec{i}-\sin \vec{j} \tag{5}
\end{align*}
$$

$r(t)=-\sin t i-\cos t j+e^{t} k+\overrightarrow{c_{1}} t+\overrightarrow{c_{2}}$.
Applying initial conditions

$$
\begin{align*}
& \overrightarrow{c_{2}}=-i+j \ldots \tag{1}\\
& \overrightarrow{c_{1}}=i \tag{1}\\
& r(t)=(t-\sin t-1) i+(1-\cos t) j+e^{t} k \tag{1}
\end{align*}
$$

15

$$
\begin{align*}
& F=z-x^{2}-y^{2} \tag{5}\\
& G=3 x^{2}+2 y^{2}+z^{2}-9 \\
& \nabla F=-2 x i-2 y j+k \ldots \tag{1}\\
& \nabla G=6 x i+4 y j+2 z k . . \tag{1}
\end{align*}
$$

$\nabla F(1,1,2)=-2 i-2 j+k, \quad \nabla G(1,1,2)=6 i+4 j+4 k$
$\nabla F \times \nabla G=-12 i+14 j+4 k$
Equation of tangent line is $=\frac{x-1}{12}=\frac{y-1}{14}=\frac{z-2}{4}$.

MODULE IV

16
Identification of Region(1) $\int_{0}^{a / \sqrt{2}} \int_{0}^{x} x d y d x+\int_{a / \sqrt{2}}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x d y d x$

$$
\begin{equation*}
\text { Ans }=\frac{a^{3}}{3 \sqrt{2}} \tag{2}
\end{equation*}
$$

17 Identification of Region

$$
\begin{gather*}
\int_{0}^{2} \int_{y^{2}}^{6-y} x y d x d y \ldots \ldots(2) \tag{2}\\
\frac{1}{2} \int_{0}^{2}\left(-y^{5}+y^{3}-12 y^{2}+36 y\right) d y \\
\text { Ans }=50 / 3 \ldots .(1)
\end{gather*}
$$

18
$\int_{0}^{1} \int_{y^{2}}^{1} x(1-x) d x d y$
$\int_{0}^{1}\left[\frac{x^{2}}{2}-\frac{x^{5}}{3}\right] y^{2}$

$$
\begin{align*}
& \int_{0}^{1} \frac{1}{2}\left[1-y^{4}\right]-\frac{1}{3}\left[1-y^{6}\right] d y \tag{1}\\
& {\left[\frac{1}{2}\left(y-\frac{y^{5}}{5}\right)\right]_{0}^{1}-\frac{1}{3}\left[y-\frac{y^{7}}{7}\right]_{0}^{1} \ldots .} \\
& =\frac{4}{35} \ldots \ldots . .(1) \tag{1}
\end{align*}
$$

MODULE V

19

$$
\begin{equation*}
W=\int_{C} F \cdot d r=\int_{C}\left(x^{2}+y^{2}\right) d x-x d y \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& =\int_{0}^{\frac{\pi}{2}}-\sin \theta d \theta-\cos ^{2} \theta d \theta=-\frac{\pi}{4}-1 \tag{3}\\
& \operatorname{Curl} \mathrm{~F}=0 \tag{1}\\
& F=\nabla \emptyset \tag{1}\\
& \frac{\partial \phi}{\partial x}=6 y^{2}, \frac{\partial \phi}{\partial y}=12 x y \tag{1}\\
& \emptyset=6 x y^{2}+k \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{div} F-y z^{2}+z x^{2}+x y^{2} \\
& \text { curl } F=\left(2 x y z-y x^{2}\right) i-\left(z y^{2}-2 x y z\right) j+\left(2 x y z-x z^{2}\right) k \\
& \operatorname{curl} \bar{F}=\nabla \times \bar{F} \\
& =\left|\begin{array}{ccc}
\bar{\imath} & \bar{J} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}-y z & y^{2}-z x & z^{2}-x y
\end{array}\right| \\
& =0 \\
& \text { (1 mark) }
\end{aligned}
$$

Since $\operatorname{curl} \bar{F}=0$, the line integral is independent of the path.

Consider any curve , say a line from $(0,0,0)$ to $(1,2,3)$, $x=t, y=2 t, z=3 t$ (1 mark)
$\int_{C}\left(x^{2}-y z\right) \bar{\imath}+\left(y^{2}-z x\right) \bar{\jmath}+\left(z^{2}-x y\right) \bar{k} . d \bar{r}=$
$\int_{C}\left(x^{2}-y z\right) d x+\left(y^{2}-z x\right) d y+\left(z^{2}-x y\right) d z=\int_{0}^{1} 18 t^{2} d t=$
6 (2 marks)

OR

Find Scalar potential $\varphi=\frac{x^{8+} y^{\mathrm{B}}+z^{\mathrm{B}}}{3}-x y z$.

$$
\begin{align*}
& \int f \cdot d r=[\varphi]_{(0,0,0)}^{(1,2,3)} \text {. } \tag{2}\\
& =6 \tag{1}\\
& \nabla^{2} f(r)=\nabla . \nabla f(r) \text { (} 1 \text { mark) } \tag{1}\\
& \nabla f(\mathrm{r})=\frac{\partial f(r)}{\partial x} i+\frac{\partial f(r)}{\partial y} j+\frac{\partial f(r)}{\partial z} k \\
& =\frac{f^{\prime}(r)}{r}(x \bar{\imath}+y \bar{J}+z \bar{k}) \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \nabla f^{\prime}(r)={\frac{f^{\prime \prime}\left(r^{n}\right.}{r^{\prime}}}_{\bar{r}} \\
& \nabla^{2} f(r)=\nabla \cdot \frac{f^{\prime}(r)}{r} \bar{r}=f^{\prime}(r) \nabla \cdot \frac{\bar{r}}{r}+\nabla f^{\prime}(r) \cdot \frac{\bar{r}}{r}(1 \text { mark }) \tag{1}\\
& \text { simplifying it gives } \\
& =\frac{2}{r} f^{\prime}(r)+f^{\prime \prime}(r) \text { (} 2 \text { marks) } \tag{2}
\end{align*}
$$

(Full marks may be given with suitable step marks for alternate methods)

MODULE VI

24

$$
\begin{gather*}
\int_{C} f d x+g d y=\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) d y d x \quad \text { (} 1 \text { mark) } \tag{1}\\
f=x y+y^{2}, g=x^{2} \\
\frac{\partial g}{\partial x}=2 x_{y} \frac{\partial f}{\partial y}=x+2 y \quad(1 \text { mark }) \tag{1}
\end{gather*}
$$

$$
\begin{align*}
& \int_{C} f d x+g d y=\iint_{R}\left(\frac{\partial g}{\partial x}-\frac{\partial g}{\partial y}\right) d y d x=\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(x-2 y) d y d x(\tag{1}\\
& 1 \text { mark) }
\end{align*}
$$

$$
\begin{align*}
&=\int_{0}^{1}\left(x^{\frac{3}{2}}-x-x^{3}+x^{4}\right) d x \quad(1 \text { mark }) \tag{1}\\
&=\frac{-3}{20} \quad(1 \text { mark }) \tag{1}
\end{align*}
$$

25

$$
\begin{gather*}
\iint_{\sigma} f(x, y, z) d S=\iint_{R} f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} \mathrm{dA}(1 \text { mark) } \tag{1}\\
f(x, y, z)=z^{2}, z-y(x, y)-\sqrt{x^{2}+y^{2}} \\
\frac{\partial z}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{\partial z}{\partial y}=\frac{y}{\sqrt{x^{2}+y^{2}}}, \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1}=\sqrt{2} \quad \text { (1 mark) } \tag{1}\\
\iint_{\sigma} z^{2} d S=\iint_{R}\left(x^{2}+y^{2}\right) \sqrt{2} d A \text { (1 mark) } \tag{1}
\end{gather*}
$$

Putting,

$$
\begin{gathered}
x=r \cos \theta, y=r \sin \theta, \quad d A=r d r d \theta, \quad 1<r<3,0<\theta<2 \pi \\
\iint_{\sigma} z^{2} d S=\iint_{R}\left(x^{2}+y^{2}\right) \sqrt{2} d A=\sqrt{2}
\end{gathered}
$$

$\int_{1}^{3} \int_{0}^{2 \pi} r^{2} r d r d \theta$

$$
=\sqrt{2}
$$

$\int_{1}^{3} r^{3} d r \int_{0}^{2 \pi} d \theta$
$=40 \pi \sqrt{2} \quad$ (2marks)
(Full marks may be given if the answer is correct to the question taken by student as there was lack of clarity in the power in the printed question paper)
$\operatorname{div} F=x$

$$
\phi=\iint_{\sigma} F \cdot n d s=\iiint_{G} \operatorname{div} F d V=\iiint_{G} x d V=3 \iiint_{U \cup} \int_{0}^{2-x-y} x d z d y d x=\frac{2}{3}
$$

$$
\begin{equation*}
\text { Bystoke's theorem } \int_{C} \bar{F} . d V=\iint_{R} c \operatorname{curl} \bar{F} . \bar{n} \mathrm{dS} \text { (} 1 \text { mark) } \tag{1}
\end{equation*}
$$

$$
\bar{F}=x y \bar{i}+y z \bar{f}+x z \bar{k}
$$

$$
\text { Curl } \bar{F}=\nabla \times \bar{F}=\left|\begin{array}{ccc}
\bar{l} & \bar{\jmath} & \bar{k} \tag{1}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & y z & x z
\end{array}\right|=-y \bar{\imath}-z \bar{J}-x \bar{k}(1
$$

mark)

$$
\begin{align*}
& x+y+z=1 \Rightarrow z=1-\bar{x}-y \\
& \text { So } \bar{n}=-\frac{\partial z}{\partial x} \bar{i}-\frac{\partial z}{\partial y} \bar{j}+\bar{k}=\bar{i}+\bar{\jmath}+\bar{k} \quad(1 \text { mark }) \tag{1}
\end{align*}
$$

The rectangular region in the xy plane is enclosed by $x+y-1, x-0, y-0$
$\iint_{R} \operatorname{curl} \bar{F} \cdot \bar{n} \mathrm{dS}=\iint_{R}(-y \bar{l}-z \bar{\jmath}-x \bar{k}) \cdot(\bar{i}+\bar{\jmath}+\bar{k}) \mathrm{dA}(1$ mark)

$$
\begin{aligned}
& =\iint_{R}-y-z-x \mathrm{dA} \\
& =\iint_{R}-y-1+x+y-x d A
\end{aligned}
$$

$$
\begin{equation*}
=\iint_{R}-1 d A=-\iint_{R} d A=\text {-area of the triangle }=-\frac{1}{2} \tag{1}
\end{equation*}
$$

(1 mark)

