### APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M. TECH. DEGREE EXAMINATION

# **Civil Engineering**

### (Structural Engineering and Construction Management)

# 04CE 6403 Theory of Elasticity

Maximum Marks: 60

**Duration: 3 Hours** 

# Part A

Answer all questions. Each question carries 3 marks

- 1. Define stress and Cauchy's stress tensor at a point.
- 2. Explain the term 'stress transformation' and thus discuss about the principal planes.
- 3. Explain Saint Venant's principle and its applicability.
- 4. Discuss about the axisymmetric simplification in solid continuum mechanics.
- 5. List the assumptions involved with Coulomb's expression for torsion of circular shafts.
- 6. Brief on Prandtl's stress function approach towards torsion problems.
- 7. Sketch and briefly explain the stress strain curve of mild steel up to rupture.
- 8. Explain the behaviour of a perfectly (ideal) plastic material with example.

 $(8 \times 3 = 24 \text{ marks})$ 

### Part B

#### Answer all questions. Each question carries 6 marks

9. (a) The displacement field in a solid continuum is given by  $\mathbf{u} = (x^2 + y)\mathbf{i} + (3+z)\mathbf{j} + (x^2 + 2y)\mathbf{k}$ . Determine the principal strains at a point P (3, 1, -2) and the major principal direction.

### 0r

- (b) (i) Explain Lame's stress ellipsoid.(ii) Define homogeneity, isotropy and elasticity in solid mechanics.
- 10. (a) Derive the differential equations of equilibrium for plane solid continuum problems in Cartesian coordinates.

0r

(b) Explain plane problems in Cartesian coordinates with examples.

11. (a) A cantilever beam of span *L*, unit width and depth 2*h*, is subjected to a concentrated load *P* at the free end. Assume an Airy's stress function,  $\phi = Axy + Bxy^3$ , where *A* and *B* are constants. Determine the expressions for stress components. Plot the variation of the stress components.

### 0r

(b) Discuss the Airy's stress function approach for the analysis of boundary value problems in elastic solid mechanics.

12. (a) Derive the expressions for the stress components of a thick cylinder subjected to external pressure using Lame's approach.

Or

(b) Derive the governing differential equation and the stress components of a rotating disc of uniform thickness and mass density.

13. (a) Discuss Prandtl's membrane analogy.

0r

(b) Using Bredt-Batho theory, find the shear stress distribution and the angle of twist over a 5 m length of the thin-walled double cell tube subjected to a torque of 50 kNm. The section is symmetrical with respect to the horizontal axis. Assume that the centre of twist lies at the centroid of the section. Take G = 30 GPa.



14. (a) Discuss about yield theories and their applications in detail.

0r

(b) Explain the elasto-plastic bending of beams, specially mentioning the difference between behaviour of symmetric and asymmetric sections.

 $(6 \times 6 = 36 \text{ marks})$