Total Pages: 2

Course Code: RLMCA207

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Name:

Course Name: DESIGN AND ANALYSIS OF ALGORITHMS

Max. Marks: 60

Reg No.:_____

Duration: 3 Hours

PART A

Answer all questions, each carries3 marks.

		•	
1		What is an algorithm? Explain its characteristics.	(3)
2		Write down control abstraction for divide and conquer method.	(3)
3		Explain the control abstraction for greedy strategy.	(3)
4		What is the principle of optimality in the theory of dynamic programming?	(3)
5		Write down DFS algorithm.	(3)
6		State sum of subset problem.	(3)
7		Explain the concept of branch and bound strategy.	(3)
8		Distinguish between deterministic and non deterministic algorithm.	(3)
9		PART B Answer six questions, one full question from each module and carries6 marks. Module I Explain time and space complexity with relevant examples.	(6)
		OR	
10		What are asymptotic notations? Briefly explain their properties.	(6)
		Module II	
11		Write down an algorithm for finding minimum and maximum element in a list of	(6)
		numbers. Explain the concept with an example.	
		OR	
12		Explain the concept of merge sort algorithm with example.	(6)
		Module III	
13	a)	Define minimum cost spanning tree.	(2)
	b)	Explain Prim's algorithm for finding MST.	(4)
		OR	
14		Explain Knapsack problem. Find out the optimal solution for the following 3 items (P1, P2, P3) = $(500,900,700)$ and (W1, W2, W3)= $(1,3,7)$. Knapsack capacity is 5. Also write down the Knap cock electric down.	(6)
		down the Knap sack algorithm.	

D7420

Module IV

15 If we are given a directed graph G with n vertices. Explain how will you find out (6) the length of the shortest path between any pair of vertices in G. Justify your answer with an example.

OR

16 What is dynamic programming? Explain how this concept is applied to solve (6) travelling salesman problem.

Module V

- 17 Explain how N- queen's problem is solved using the concept of backtracking. (6)
 OR
 18 Explain N²-1 puzzle problem in detail. (6)
 Module VI
 19 a) Explain NP-Hard and HP-complete classes. (3)
 b) Explain Clique problem. (3)
 OR
- 20 Prove that the travelling sales person problem is NP-complete. (6)
