Total Pages: 2

Reg No.
Name: \qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER MCA DEGREE EXAMINATION, DECEMBER 2017

Course Code: RLMCA103
 Course Name: DISCRETE MATHEMATICS

Max. Marks: 60
Duration: 3 Hours

PART A
 Answer all questions, each carries 3 marks.
 Answer all questions, each cawies 3 marks.

1 Show that(AUB) $)^{\prime}=A^{\prime} \cap B^{\prime}$ Marks

2 Find $\operatorname{GCD}(12378,3054)$
3 Find the number of arrangements of letters of the word MISSISSIPPI in which the 4 I's come together
$4 \quad$ Find a_{12} when $\mathrm{a}_{\mathrm{n}+1}{ }^{2}=5 \mathrm{a}_{\mathrm{n}}{ }^{2}$ with $\mathrm{a}_{0}=2$
5 Define Regular graph and Connected graph with example
6 A connected planar graph has 9 vertices having degrees 2,2,2,3,3,3,4,4,5.Find the number of edges and faces
7 Define Tautology and show that $(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{p}$ is a tautology
$8 \quad$ Show that $\mathrm{p} \rightarrow \mathrm{q}$ and $\sim \mathrm{pvq}$ are logically equivalent
PART B
Answer six questions, one full question from each module and carries6 marks.

Module I

9 a) Define equivalence relation
b) Prove that for $x, y \in Z$ the relation defined by $R=\{(x, y)$: 5 divides $x-y\}$ is an equivalence relation

OR

10 a) Let $f: R \rightarrow R$ defined by $f(x)=x+2$ and $g(x)=x^{2}$. Find gof and fog
b) Let $f: R-\{3\} \rightarrow R-\{1\}$ defined by $f(x)=\frac{x-2}{x-3}$. Check whether f is bijective

Module II
11 Solve the linear Diophantine equation $172 \mathrm{x}+20 \mathrm{y}=1000$

OR

12 Solve the set of simultaneous congruences $\mathrm{x} \equiv 2(\bmod 3), \mathrm{x} \equiv 3(\bmod 5), \mathrm{x} \equiv 2(\bmod 7)$

Module III

13 a) Determine all integer solutions to the equation $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=7$ many ways can the committee be formed if
i) There should be an even number of men
ii) There should be at least 8 men

OR

14 a) Find the coefficient of $x^{2} y^{3} z^{4}$ in the expansion of $(x+y+z)^{9}$
b) Define Pigeonhole principle. Show that in a group of 6 people, where any two
people are either friends or Strangers, there are either 3 mutual friends or 3 mutual strangers

Module IV

15 Solve $a_{r}+a_{r-1}=3 r(2)^{r}$

OR

16 Solve $a_{n+2}-4 a_{n+1}+3 a_{n}=-200, \mathrm{n} \geq 0$; given that $a_{0}=3000, a_{1}=3300$

Module V

17 Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected graph or multi graph with no isolated vertices.
Show that G has an Euler circuit if and only if G is connected and every vertex in G has even degree

OR

18 Use Fleury's algorithm to find an Euler circuit for the following graph

Module VI

19 a) Translate the sentence into a logical expression: "You cannot access the internet from campus only if you are a computer science major or you are not a freshman"
b) Show that the following argument is valid:"If today is Monday, I have a test in Physics or Mathematics. If my Physics professor is sick, I will not have a test in Physics. Today is Monday and my Physics professor is sick. Therefore I have a test in Mathematics"

OR

20 a) Negate the statement in logical form "There is an honest student".
b) Use rules of inference to show that $\exists \mathrm{xM}(\mathrm{x})$ follows logically from the premises $(\mathrm{x})(\mathrm{H}(\mathrm{x}) \rightarrow \mathrm{M}(\mathrm{x}))$ and $\exists \mathrm{xH}(\mathrm{x})$

