## Total Pages: 2

Reg No.:
Name: $\qquad$
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER MCA DEGREE EXAMINATION, DECEMBER 2017

## Course Code: RLMCA109 <br> Course Name: DIGITAL FUNDAMENTALS

Max. Marks: 60

## PART A <br> Answer all questions, each carries 3 marks.

Duration: 3 Hours

1 Convert $3.248 \times 10^{4}$ into single precision floating point binary number.
2 Justify the statement: NAND and NOR gates are universal gates
3 Specify the minterms of A+BC.
4 Compare and contrast ripple carry adder and carry look ahead adder.
$5 \quad$ What is a de-multiplexer?
6 Differentiate between combinational logic and sequential logic circuits.
7 Why asynchronous counters are also known as ripple counters?
8 What do you mean by a Modulo-N Counter?
PART B

## Answer six questions, one full question from each module and carries 6 marks.

Module I
9 a) Convert 1110001.0001 to decimal and hexadecimal.
b) Given $A=1001010$ and $B=1000$. Perform $A-B, A / B$ and $A \times B$.

## OR

10 a) Convert the pair into binary and add using 2's complement: -72 and 27.
b) Express -34 in sign magnitude, 1 's complement form and 2 's complement form.

## Module II

11 a) State and prove (i) $\mathrm{A}+\mathrm{A}^{\prime} \mathrm{B}=\mathrm{A}+\mathrm{B}$, (ii) $\mathrm{A}+\mathrm{AB}=\mathrm{A}$.
b) State and prove Demorgan's Theorems.

OR
Simplify using K-Map $y=\Sigma(0,1,3,5,9,12)+\Sigma \mathrm{d}(2,4,6,7)$
Module III
13 Implement the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,3,4,11,12,13,14,15)$ using 8-to-1 multiplexer.

OR
14 Explain the working principle of full adder in detail. Design a full adder using a decoder.

## Module IV

15 J K flip-flop can be used for solving the 'indeterminate state' in SR Flip-flop. Justify the statement.

## OR

16 What is the disadvantage of level triggering? How can we overcome it by using master slave Flip-flop?

## Module V

17 Classify shift registers based on the data movement in register.

## OR

18 Differentiate between up asynchronous counter and down asynchronous counter with suitable logic diagrams.

## Module VI

19 Describe the components of a computer with a block diagram.

## OR

20 Explain in detail about the hardware and software components of an Arduino board.

