Total Pages:3

Reg No.:		.: Name:				
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017				
		Course Code: ME202				
	Course Name: ADVANCED MECHANICS OF SOLIDS (ME)					
Max. Marks: 100 Duration: 3 Hours						
		(Data nanabooks not permittea) PART A				
		Answer any three questions. Each question carries 10 marks.				
1	a)	What is meant by the state of stress at a point?	(3)			
	b)	The state of stress at a point is characterised by $\sigma_x=18 \sigma_y=$ - 50, $\sigma_z=32 \tau_{xy}=0$, $\tau_{xz}=$	(7)			
		24, τ_{yz} = 0 (All stress values are in kPa); Calculate the principal stresses and the				
		direction of largest tensile principal stress?				
2	a)	Explain the plane stress and strain with ONE example each?	(4)			
	b)	A displacement field $u=2xyi+3zk$ where i and k are unit vectors along x and z	(6)			
		directions is acting at $(1, 1, 0)$. Find the rectangular components of strain and obtain				
		the state of strain matrix?				
3	a)	Describe the Airy's stress function with the help of second degree polynomial?	(4)			
	b)	Obtain the bending stress on the cross section of a cantilever beam carrying point	(6)			
		load at the free end using polynomial stress function method?				
4	a)	Write the generalized Hook's law for an isotropic material.	(5)			
	b)	State and prove uniqueness theorem.	(5)			
		PART B				
		Answer any three questions. Each question carries 10 marks				
5	a)	Obtain the stress distribution in a rotating solid disc of radius 'b' with no external	(7)			
		forces at the outer surface.				
	b)	Sketch the circumferential stress distribution for a thick cylinder subjected to	(3)			
		internal pressure only.				
6	a)	Draw the stress distribution around a small hole (diameter 'b'), on a thin plate	(4)			
		having large width ('a') where b< states and the two having large width ('a') where b< states and the two				

- b) What are the assumptions involved in axisymmetric problems. Write the governing (6) equilibrium equations for the axisymmetric problem with sketch indicating stress components.
- 7 a) Find the value of load P in Fig.1, so that the maximum bending stress allowed is 15MPa for the case of beam shown below, subjected to unsymmetrical bending.
 (8)

(2)

(2)

8 a) Obtain the expression for strain energy in a bar subjected to:- (6)
i) axial force ii) bending moment iii) twisting moment
b) State and prove reciprocal relation in strain energy. (4)

PART C Answer any four questions. Each question carries 10 marks.

9	a)	Explain the principle of virtual work?	(3)
	b)	State and prove Castiglianos's first theorem.	(7)
10	a)	Write the general expression for twisting moment for shafts of non-circular cross section incorporating warping function $\Psi(x,y)$.	(3)
	L)	What is moont by morning of non-simpler shofts? Draws that St Venerate morning	(7)

- b) What is meant by warping of non-circular shafts? Prove that St.Venants warping (7) function is harmonic?
- 11 a) Explain the minimum potential energy theorem?

What is meant by shear centre?

b) Find the support reaction R in Fig.2 at the end of the cantilever beam using strain (8) energy method. (Load acting is P at a distance of 'b' from the roller support).

b)

Page 3 of 3

Fig.2

- 12 a) Discuss the Maxwell reciprocal theorem.
 - b) A shaft of square section as shown in Fig. 3 below is subjected to a twisting moment such that the maximum shear stress is limited to 250GN/mm² Obtain the torque and angular twist, if shaft is 1.6m long (Take G= 70000N/mm²).

Fig.3

- 13 a) Why closed sections are having better torsional rigidity than open sections, briefly (4) explain?
 - b) Find an expression for the maximum shear stress induced in an elliptical bar under (6) torsion?
- 14 a) A thin walled box section 2a × a × t is to be compared with a solid circular section (8) having diameter 'a' shown below in Fig.4. Find the thickness 't' so that both sections have: -

i) Same shear stress for same torqueii) Same stiffness.

b) Define the term shear flow in a thin walled tube?

(2)

В

(2)