APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION
Civil Engineering
(Geomechanics and Structures)

04 CE 6301 APPLIED MATHEMATICS FOR CIVIL ENGINEERS

Max. Marks : 60

Duration: 3 Hours

PART A

1. Show that $P_{n}(-1)=(-1)^{n}$
2. Find the inverse Laplace transform of $\frac{4 s+5}{(s+2)(s-1)^{2}}$.
3. Write the terms contained in $\mathrm{S}=a_{i j} x^{i} x^{j}$ taking $\mathrm{n}=3$.
4. Show that $\mathrm{y}(\mathrm{x})=2-\mathrm{x}$ is a solution of the integral equation $\int_{0}^{x} e^{x-t} y(t) d t=e^{x}+x-1$
5. Using D'Alembert's method, find the deflection of a vibrating string of unit length having fixed ends, with initial velocity zero and initial deflection $f(x)=k(\sin x-\sin 2 x)$.
6. Solve the partial differential equation $r=t$.
7. Find the approximate value of $\int_{0}^{1} \frac{\sin x}{x} d x$ using three-point rule.
8. Apply Guass two-point formula to evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$.

$$
(8 \times 3=24 \text { marks })
$$

PART B

9. a) Derive Rodrigue's formula.

OR

b) Explain the Orthogonality property for Bessel polynomials.
10. a) Solve by the method of transforms $t y^{\prime \prime}+2 y^{\prime}+t y=\operatorname{cost}$ given $y(0)=1$.

$$
O R
$$

b) Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}(x>0, t>0)$ subject to the conditions
i) $u=0$, when $x=0, t=0$
ii) $u=\left\{\begin{array}{c}1,0<x<1 \\ 0, x \geq 1\end{array}\right.$
iii) $u(x, t)$ is bounded
11. a) A co-varient tensor has components $2 x-z, x^{2} y, y z$ in Cartesian co-ordinate system. Find its components in cylindrical co-ordinates.

OR
b) Show that $a_{i j} A^{k j}=\Delta \delta_{i}^{k}$ where Δ is a determinant of order three and $A^{i j}$ are cofactors of $a_{i j}$.
12. a) Find the integral equation corresponding to the boundary value problem $y^{\prime \prime}+x y=1$, given that $\mathrm{y}(0)=\mathrm{y}^{\prime}(0)=0$.

$$
=\quad O R
$$

b) Using the method of successive approximations solve the integral equation

$$
y(x)=1+\tau \int_{0}^{1}(1-3 x t) y(t) d t
$$

13. a) Derive D'Alembert's solution of wave equation.
b) Solve the partial differential equation $y^{2} r-2 y s+t=p+6 y$.
14. a) Solve the equations $x^{2}+y^{2}=16$ and $x^{2}-y^{2}=4$, start with the approximate solution $(2 \sqrt{2}, 2 \sqrt{2})$.

OR

b) Solve the partial differential equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square with sides $\mathrm{x}=0=\mathrm{y}, \mathrm{x}=3=\mathrm{y}$ with $\mathrm{u}=0$ on the boundary and mesh length=1.

$$
(6 \times 6=36 \text { marks })
$$

