APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION
Civil Engineering
(Structural Engineering and Construction Management)

04 CE 6401- Analytical methods in Engineering

Max. Marks : 60
Duration: 3 Hours

Part-A
Answer all questions
Each question carries 3 marks

1. Solve the differential equation $\frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+6 y=0$
2. Solve $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}=0$
3. Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$
4. Solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$
5. Classify the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial y^{2}}$
6. In which part of the $x y$-plane the following equation is elliptic

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial y}+\left(x^{2}+4 y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=2 \sin x y .
$$

7. Derive standard 5-point formula
8. Derive diagonal 5-point formula

Part-B

Answer one choice in each question
Each question carries $\mathbf{6}$ marks
9.
a. Solve $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$

Or
b. Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+4 y=4 \sec ^{2} 2 x$
10.
a. Solve $(y-z) p+(x-y) q=z-x$

> Or
b. Show that the equations $\frac{\partial z}{\partial x}=(x+y)^{2}, \frac{\partial z}{\partial y}=x^{2}+2 x y+y^{2}$ are compactible and solve them.
11.
a. \quad Solve $z^{2}=p q x y$

Or

b. Solve $r-4 s+4 t=e^{2 x+y}$
12.
a. A string is stretched and fastened to two points l apart.Motionis started by displacing the string in the form $y=a \sin \frac{\pi x}{l}$ from which it is released at time $t=$ 0 .Show that the displacement of any point at a distance x from one end at time t is given by $y(x, t)=a \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l}$

Or

b. An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them.The breadth is π; this end is maintained at a temperature u_{0} at all points and other edges are at zero temperature.Determine the temperature at any point of the plate in steady state.
13.
a. Derive the finite difference approximation for the partial derivative $u_{x x}$ with diagram.

Or

b. Derive the finite difference approximation for the partial derivative $u_{y y}$ with diagram.
14.
a. Solve the elliptic equation $u_{x x}+u_{y y}=0$ for the square mash of the following fig.with boundary values

$$
\begin{aligned}
& u(1,0)=500, u(2,0)=1000, u(3,0)=500, u(4,0)=0, u(0,0)=0 \\
& u(0,1)=1000, u(0,2)=2000, u(0,3)=1000, u(0,4)=1000 \\
& u(1,4)=500, u(2,4)=1000, u(3,4)=500, u(4,4)=0, u(4,1)=1000 \\
& u(4,2)=2000, u(4,3)=1000
\end{aligned}
$$

	u_{1}	C	u_{2}	u_{3}	
A	u_{4}		u_{5}	u_{6}	B
	u_{7}		u_{8}	u_{9}	
		D			

Or

b. Evaluate the pivotal values of the equation $u_{t t}=16 u_{x x}$, taking $\mathrm{h}=1$ upto $t=1.25$.The boundary conditions are $u(0, t)=u(5, t)=0$,

$$
u_{i}(x, 0)=0 \text { and } u(x, 0)=x^{2}(5-x) .
$$

